
Completeness of infinitary intuitionistic logics

Christian Esṕındola
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Classical infinitary logics

Described and studied extensively by Carol Karp (1964)

The language Lκ,κ is a two-fold generalization of the finitary case.
Let φ, {φα : α < γ} (for each γ < κ) be formulas. Then the following
are also formulas:

1 ∧
α<γ

φα,
∨
α<γ

φα

2

∀xγφ, ∃xγφ

(where xγ = {xα : α < γ})
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Classical infinitary logics

Hilbert-style system enough to derive a completeness theorem for
Set-valued models. Featuring the following axiom schemata, for each
γ < κ:

1 Classical distributivity:∧
i<γ

∨
j<γ

ψij →
∨

f ∈γγ

∧
i<γ

ψif (i)

2 Classical dependent choice up to γ (DCγ):∧
α<γ

∀β<αxβ∃xαψα → ∃α<γxα
∧
α<γ

ψα

(for disjoint xα and such that no variable in xα is free in ψβ for β < α).

Completeness theorem proved using Boolean algebraic methods and
thus relies heavily in the use of the excluded middle axiom.
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κ-regular logic

Within infinite-quantifier languages, Makkai (1990) provides a partial
answer by considering infinitary regular theories.

These are a generalization of regular theories admitting the use of
infinitary conjunction and infinitary existential quantification. Makkai
identified the correct type of categories corresponding to κ-regular logic,
the so called κ-regular categories.

Definition (Makkai)
A κ-regular category is a regular category that has κ-limits (i.e., limits of
κ-small diagrams) and satisfies further an exactness property of Set
corresponding to the axioms DCγ of dependent choice up to γ for each
γ < κ.
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κ-regular logic

Consider a κ-chain in a category C with κ-limits, i.e., a diagram
Γ : γop → C specified by morphisms (hβ,α : Cβ → Cα)α≤β<γ with the
following condition:

the restriction Γ|β is a limit diagram for every limit ordinal β.

We say that the morphisms hβ,α compose transfinitely, and take the limit
projection fβ,0 to be the transfinite composite of hα+1,α for α < β.
Then the exactness condition reads that if all maps hβ,α are epimorphisms,
so is fβ,0. Loosely speaking we say that the transfinite composition of
epimorphisms is itself an epimorphism.
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Generalizations
Goals:

1 Generalize κ-regular categories to κ-coherent categories, adding
κ-disjunctions to the language

2 Investigate infinitary-first-order categorical logic by coding
κ-first-order theories via Morleyization

Connections with large cardinal axioms:
1 The distributivity property suggests to study the case of inaccessible κ
2 A Set-valued completeness theorem for κ-coherent logic forces κ to

be a weakly compact cardinal.
Consider a tree of height κ and levels of size less than κ, and a language
containing one propositional variable Pa for every node a in the tree. The
theory of a branch is axiomatized as follows:

> `
∨

a∈Lα
Pa for each α < κ, where Lα is set of all nodes at level α

Pa ∧ Pb ` ⊥ for each pair a 6= b ∈ Lα and each α < κ

Pa ` Pb for each pair a, b such that a is a successor of b
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Generalizations

Then:
1 Under the assumption of completeness, every such tree has a cofinal

branch

2 This is known as the tree property, and, for inaccessible κ, it is
equivalent to κ being a weakly compact cardinal, a relatively mild
large cardinal assumption beyond inaccessibility.

We can show, on the other hand, that the hypothesis of weak
compactness is enough to derive a completeness theorem for κ-coherent
theories of cardinality at most κ with respect to Set-valued models
κ-coherent logic then extends geometric logic, for which a completeness
theorem in terms of Set-valued models is not possible.
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κ-coherent logic

κ-coherent categories exactness property:

Replace each epimorphism in a κ-chain by a jointly covering family of
arrows of cardinality less than κ.
The transfinite composites of these arrows should form themselves a
jointly covering family

Definition
A κ-coherent category is a κ-complete coherent category with κ-complete
subobject lattices where unions of cardinality less than κ are stable under
pullback, and where the transfinite composites of jointly covering
κ-families of morphisms form a jointly covering family.
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κ-coherent logic

For κ-regular categories, the exactness property corresponds to DCγ
for each γ < κ

The corresponding axiom schema in the κ-coherent logic is the
following “transfinite transitivity” rule:

φi `yi

∨
j∈γβ+1,j|β=i

∃xjφj β < γ, i ∈ γβ

φi a`yi

∧
α<β

φi |α β < γ, limit β, i ∈ γβ

φ∅ `y∅

∨
f ∈γγ

∃β<γxi |β+1

∧
β<γ

φi |β

for each cardinal γ < κ, where yi is the canonical context of φi , provided
that, for every i ∈ γβ+1, FV (φi ) = FV (φi |β ) ∪ xi and xi |β+1 ∩ FV (φi |β ) = ∅
for any β < γ, as well as FV (φi ) =

⋃
α<β FV (φi |α) for limit β. Note that

we assume that there is a fixed well-ordering of γγ for each γ < κ.
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The corresponding axiom schema in the κ-coherent logic is the
following “transfinite transitivity” rule:

φi `yi

∨
j∈γβ+1,j|β=i

∃xjφj β < γ, i ∈ γβ

φi a`yi

∧
α<β

φi |α β < γ, limit β, i ∈ γβ

φ∅ `y∅

∨
f ∈γγ

∃β<γxi |β+1

∧
β<γ

φi |β

for each cardinal γ < κ, where yi is the canonical context of φi , provided
that, for every i ∈ γβ+1, FV (φi ) = FV (φi |β ) ∪ xi and xi |β+1 ∩ FV (φi |β ) = ∅
for any β < γ, as well as FV (φi ) =

⋃
α<β FV (φi |α) for limit β. Note that

we assume that there is a fixed well-ordering of γγ for each γ < κ.
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Completeness theorems for κ-coherent logic
The transfinite transitivity rule embodies intuitionistically both the
distributivity and the dependent choice axiom

Theorem (E., 2016)
Let κ be an inaccessible cardinal. Then κ-coherent logic is sound and
complete with respect to models in κ-coherent categories.

We can also prove a completeness theorem with respect to sheaf models.
Consider a κ-coherent category and equip it with the Grothendieck
topology τ consisting of jointly covering families of cardinality less than κ.
Then the topology is subcanonical and Yoneda embedding C → Sh(C, τ) is
a (conservative) κ-coherent functor.
Moreover, we have, as expected:

Proposition
Let κ be an inaccessible cardinal. If C is κ-coherent, then Sh(C, τ) is
κ-coherent.

Christian Esṕındola (Stockholm University) Completeness of infinitary intuitionistic logics May 21, 2016 10 / 14



Completeness theorems for κ-coherent logic
The transfinite transitivity rule embodies intuitionistically both the
distributivity and the dependent choice axiom

Theorem (E., 2016)
Let κ be an inaccessible cardinal. Then κ-coherent logic is sound and
complete with respect to models in κ-coherent categories.

We can also prove a completeness theorem with respect to sheaf models.
Consider a κ-coherent category and equip it with the Grothendieck
topology τ consisting of jointly covering families of cardinality less than κ.
Then the topology is subcanonical and Yoneda embedding C → Sh(C, τ) is
a (conservative) κ-coherent functor.
Moreover, we have, as expected:

Proposition
Let κ be an inaccessible cardinal. If C is κ-coherent, then Sh(C, τ) is
κ-coherent.
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Christian Esṕındola (Stockholm University) Completeness of infinitary intuitionistic logics May 21, 2016 10 / 14



Completeness theorems for κ-coherent logic
The transfinite transitivity rule embodies intuitionistically both the
distributivity and the dependent choice axiom

Theorem (E., 2016)
Let κ be an inaccessible cardinal. Then κ-coherent logic is sound and
complete with respect to models in κ-coherent categories.

We can also prove a completeness theorem with respect to sheaf models.
Consider a κ-coherent category and equip it with the Grothendieck
topology τ consisting of jointly covering families of cardinality less than κ.
Then the topology is subcanonical and Yoneda embedding C → Sh(C, τ) is
a (conservative) κ-coherent functor.

Moreover, we have, as expected:

Proposition
Let κ be an inaccessible cardinal. If C is κ-coherent, then Sh(C, τ) is
κ-coherent.
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Completeness theorems for κ-first-order logic

Completeness for sheaf models does not require weakly compact
cardinals

For Kripke (i.e., presheaf) models, the situation is different: a cofinal
branch for a tree of height κ and levels of size less than κ is provided
by B = {a : p 
 Pa}, where p is a node of a Kripke model of the
theory of a branch.

So:

Weak compactness is needed for a completeness theorem with respect
to κ-Kripke semantics
Using a generalization of a theorem of Joyal, we can prove that weak
compactness is also a sufficient condition.
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Completeness theorems for κ-first-order logic

Let C be a κ-coherent category and let Mod(C) be the category of
κ-coherent Set-valued models of cardinality at most κ with κ-coherent
homomorphisms.

There is an evaluation functor:

ev : C → SetMod(C)

It is clear that ev is κ-coherent.
Moreover, we have:

Theorem (E., 2016)
Let κ be a weakly compact cardinal. If C is a κ-coherent, Heyting category
of cardinality at most κ, then ev : C → SetMod(C) is a conservative,
(κ-coherent) and Heyting functor.
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Completeness theorems for κ-first-order logic

This theorem encapsulates three different completeness results:

1 the presheaf SetMod(C), as a κ-coherent, Heyting category, provides a
conservative κ-Kripke model for theories of cardinality at most κ.

2 the conservativity of ev : C → SetMod(C) is a Set-valued completeness
for κ-coherent theories of cardinality at most κ (this uses weak
compactness).

3 if C is in addition a Boolean category, this is Karp’s completeness
theorem for κ-first-order classical theories of cardinality at most κ.
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Future work

The following are further lines of work to pursue:

Establish conceptual completeness theorems, or to what extent the
category of κ-coherent models determines the κ-coherent theory (up
to κ-pretopos completion)
Use strongly compact cardinals to remove the restriction on the
cardinality of the theories
Study the case of finite-quantifier theories over Lκ,ω
Call κ a Heyting cardinal if κ-first-order theories of cardinality strictly
less than κ are complete for κ-Kripke semantics. Determine its
strength within the large cardinal hierarchy.
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Thanks for your attention
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