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History of the PSSL?

”The PSSL grew out of Dana Scott’s seminars for his research students at Oxford.
Initially it took place at Oxford, Cambridge and Sussex, usually in buildings left locked
and vacant over the weekend. It never asked for or received any official recognition or
funding. Lectures were informal.” [From G. C. Wraith’s webpage]

First Meeting: Oxford, 1–2 May 1976

Friday
14.00: Gonzalo Reyes (Montréal) Coherent logic
16.00: Roy Dyckhoff (St Andrews) Sheaves and bundles
Saturday
09.00: Robert Seely (Cambridge) Hyperdoctrines and proof theory
10.00: Wilfrid Hodges (Bedford College) Uniform reduction for local functors
11.00: Harold Simmons (Aberdeen) j-maps on Heyting algebras
11.45: Mike Fourman (Oxford) Sober spaces in topoi
14.15: Martin Hyland (Oxford) Postprandial discursion
15.15: Peter Johnstone (Cambridge) Some short theorems on Kuratowski-finiteness
16.45: Robin Grayson (Oxford) Finiteness in intuitionistic set theory
Sunday
09.30: Gavin Wraith (Sussex) Etale spectrum as a classifying topos
10.30: Julian Cole (Sussex) The bicategory of topoi
11.45: Gonzalo Reyes (Montréal) Negations of coherent formulae



The topos of reversible graphs as a topos of spaces

Let M be the 4-element monoid of endomaps of a 2-element set.

If M̂ = SetM
op

and p∗ = M̂(1, ) : M̂ → Set then

M̂

p!

��
a p∗

��
Set

p∗

OO

a ap!

OO

and

1. p∗, p! : Set→ M̂ are fully faithful.

2. p!G is the set of connected components of the graph G .

3. p!S is the codiscrete graph with nodes in the set S . E.g.:

S = 2 = {•, •} � // •
//
•oo

4. (Nullstellensatz) There is an epi natural transformation
θ : p∗G → p!G . (’Every piece has a point’.)
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Leibniz graphs

Definition

An object G in M̂ is called Leibniz if θ : p∗G → p!G is an iso.

Intuition:

Every piece has exactly one point

•
%% ��
QQ ee • •

��
EE

Let s∗ : L → M̂ be the full subcategory of Leibniz graphs.

Lemma

L is a topos and s∗ : L → M̂ is the inverse image of an essential
geometric morphism s : M̂ → L.



Leibniz graphs

Definition

An object G in M̂ is called Leibniz if θ : p∗G → p!G is an iso.

Intuition: Every piece has exactly one point

•
%% ��
QQ ee • •

��
EE

Let s∗ : L → M̂ be the full subcategory of Leibniz graphs.

Lemma

L is a topos and s∗ : L → M̂ is the inverse image of an essential
geometric morphism s : M̂ → L.



Leibniz graphs

Definition

An object G in M̂ is called Leibniz if θ : p∗G → p!G is an iso.

Intuition: Every piece has exactly one point

•
%% ��
QQ ee • •

��
EE

Let s∗ : L → M̂ be the full subcategory of Leibniz graphs.

Lemma

L is a topos and s∗ : L → M̂ is the inverse image of an essential
geometric morphism s : M̂ → L.



Leibniz graphs
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M̂ and L

M̂

p!

��
a

s

''

p∗

��

L
q!

��
a q∗

��
Set

p∗

OO

a ap!

OO

Set

q∗

OO

a aq!

OO

but one important difference:

p!2 connected vs θ : q∗ → q! iso.

Proposition (Lawvere’07)

The smallest subtopos of M̂ containg s∗ : L → M̂ is M̂.

Proof.

L = N̂ for monoid N. Let L = s∗(N( , ∗)). Observe that
M( , ∗) = • YY

//
•oo YY is a retract of LL.
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Axiomatic Cohesion

“An explicit science of cohesion is needed to account for the varied
background models for dynamical mathematical theories. Such a
science needs to be sufficiently expressive to explain how these
backgrounds are so different from other mathematical categories,
and also different from one another and yet so united that they
can be mutually transformed.”

F. W. Lawvere. Axiomatic Cohesion, TAC 2007.



Toposes of spaces

A topos of spaces is

a topos E such that the inclusion
p∗ a p! : E¬¬ → E extends to a string of adjoints

E
p!

��
a p∗

��
s.t.:

E¬¬

p∗

OO

a ap!

OO
1. θ : p∗ → p! is epi and

2. p! : E → E¬¬ preserves finite products.

“The two downward functors express the opposition between
‘points’ and ‘pieces’. The two upward ones oppose pure cohesion
(‘codiscrete’) and pure anti-cohesion (‘discrete’); these two are
indentical in themselves with S but united by the points concept
p∗ that uniquely places them as full subcategories of E .” [L’07]

An object X in E is connected if p!X = 1.

E will be called sufficiently cohesive if p!2 is connected.
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Examples

Proposition (Johnstone’11 + Lawvere · Menni’15)

If C is a small category with terminal and every object has a point
then E = Ĉ is a topos of spaces and E¬¬ = Set.

In this case, E is sufficiently cohesive iff some object of C has at
least two points.

For example: simplicial sets [EZ], cubical sets [Kan], the classifier
of non-trivial boolean algebras [Lawvere], Ball complexes
[RoyThesis], many Gaeta toposes (e.g. for the theory of
distributive lattices or for that of C-algebras), ...

Other examples over Set: Zariski topos (over C), sheaves for sites
of monoids of ’tame’ endos of [0, 1]. In this cases, E¬¬ = Set.

Other examples: Variants of Zariski (over other fields, say R)
where E¬¬ 6= Set.
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Leibniz objects

Let E be a topos of spaces.

Definition

An object X in E is called Leibniz if θ : p∗X → p!X is an iso.

Intuition: Every piece has exactly one point

Let s∗ : L → E be the full subcategory of Leibniz objects.

Proposition (Most of it in Lawvere’07)

L is a topos and s∗ : L → E is the inverse image of an essential
geometric morphism s : E → L.

Definition

E is said to be infinitesimally generated if the smallest subtopos
containing s∗ : L → E is the whole of E .
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E is said to be infinitesimally generated if the smallest subtopos
containing s∗ : L → E is the whole of E .



Leibniz objects

Let E be a topos of spaces.

Definition

An object X in E is called Leibniz if θ : p∗X → p!X is an iso.

Intuition: Every piece has exactly one point

Let s∗ : L → E be the full subcategory of Leibniz objects.

Proposition (Most of it in Lawvere’07)

L is a topos and s∗ : L → E is the inverse image of an essential
geometric morphism s : E → L.

Definition

E is said to be infinitesimally generated if the smallest subtopos
containing s∗ : L → E is the whole of E .



The main result

Let E be a topos of spaces. Recall,

E is said to be infinitesimally generated if the smallest subtopos
containing s∗ : L → E is the whole of E .

E is said to be sufficiently cohesive if p!2 is connected.

Theorem

If E is sufficiently cohesive then it is infinitesimally generated.



The main result

Let E be a topos of spaces. Recall,

E is said to be infinitesimally generated if the smallest subtopos
containing s∗ : L → E is the whole of E .

E is said to be sufficiently cohesive if p!2 is connected.

Theorem

If E is sufficiently cohesive then it is infinitesimally generated.



The main result

Let E be a topos of spaces. Recall,

E is said to be infinitesimally generated if the smallest subtopos
containing s∗ : L → E is the whole of E .

E is said to be sufficiently cohesive if p!2 is connected.

Theorem

If E is sufficiently cohesive then it is infinitesimally generated.



The main result

Let E be a topos of spaces. Recall,

E is said to be infinitesimally generated if the smallest subtopos
containing s∗ : L → E is the whole of E .

E is said to be sufficiently cohesive if p!2 is connected.

Theorem

If E is sufficiently cohesive then it is infinitesimally generated.



Weak generation by a full subcategory

A topos E is weakly generated by a full subcategory C → E if the
smallest subtopos containing C → E coincides with E .

1. Every topos is weakly generated by itself.

2. A topos of spaces E is infinitesimally generated iff it is weakly
generated by s∗ : L → E .

3. Let C be a small category. The topos Ĉ need not be weakly
generated by Y : C → Ĉ.

If the subcategory C → E consists of only one object then we
say that E is weakly generated by that object.

4. Every topos is weakly generated by Ω.

Lemma

If Ω � JJ then E is weakly generated by J.

Proof.

Since Ω is injective, it is a retract of JJ .
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generated by Y : C → Ĉ.
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Sketch of proof of main result

Let E be a topos of spaces, so that:
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Theorem

If E is sufficiently cohesive then it is infinitesimally generated.

Let > : 1→ J be the classifier of ¬¬-dense monos in E .

Since > : 1→ J is dense, p∗> : p∗1→ p∗J is an iso.

It follows that θJ : 1 = p∗J → p!J is an iso. That is, J is Leibniz.

If E is sufficiently cohesive then Ω � JJ .
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A slightly different problem

Let E be a topos.

Let f ∗ a f∗ : E¬¬ → E be its double negation subtopos.

Let > : 1→ J be the associated classifier of dense monos

What conditions on > : 1→ J guarantee that Ω � JJ?

Definition

A pointed object > : 1→ J is called substantial if for any object X
it holds that: if

X × 1
id×> // X × J

is an iso then X is initial.
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Substantial pointed objects

A pointed object > : 1→ J is called substantial if for any object X
it holds that: if

X × 1
id×> // X × J

is an iso then X is initial.

Proposition

Let E be a topos. If the classifier > : 1→ J of ¬¬-dense monos is
substantial then E is weakly generated by J.

Proof.

Consider the disjoint monos 1
〈>,>〉 // Ω× J 1× J

⊥×Joo .

Then 1
p∗> // p∗Ω 1

p∗⊥oo is a coproduct diagram in E¬¬.

Then the map 1 + (1× J)
[〈>,>〉,⊥×J] // Ω× J is ¬¬-dense.

Let χ : Ω× J → J be its classiying map.

Substantiality implies that the transposition Ω→ JJ is mono.
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A concrete illustration

Corollary

Let C be a small category and let K be the dense Grothendieck
topology. The classifer of ¬¬-dense monos is substantial iff

for
every object C there exists a map g : D → C such that KD is not
trivial.

Exercise

Why do the above equivalent conditions hold if C has terminal
object, every object has a point and some object has at least two
distinct points?
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A final look at the main result

Proposition

Let E be a topos. If the classifier > : 1→ J of ¬¬-dense monos is
substantial then E is weakly generated by J.

Theorem

If E is sufficiently cohesive then it is infinitesimally generated.

Proof.

The classifier J of ¬¬-dense monos is Leibniz
Sufficient cohesion implies that > : 1→ J is substantial.
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