Universal Properties A categorical look at undergraduate algebra and topology

Julia Goedecke

Newnham College

24 February 2017, Archimedeans

1 Category Theory

- Maths is Abstraction
- Category Theory: more abstraction

2 Universal Properties

- Within one category
- Mixing categories

1 Category Theory

- Maths is Abstraction
- Category Theory: more abstraction

2 Universal Properties

- Within one category
- Mixing categories

What is Abstraction?

Abstraction

- Take example/situation/idea.
- Determine some (important) properties.
- "Lift" those away from the example/situation/idea.
- Work with abstracted properties.
- Should get many more examples which also fit these "lifted" properties.

What is Abstraction?

Abstraction

- Take example/situation/idea.
- Determine some (important) properties.
- "Lift" those away from the example/situation/idea.
- Work with abstracted properties.
- Should get many more examples which also fit these "lifted" properties.

- My pet and my friend's pet are both cats.
- Cats, dogs, dolphins are all mamals.
- My home, my old school, the maths department are all buildings.

The probably most important step of abstraction in the history of mathematics:

• "3 apples" \longrightarrow "3"

The probably most important step of abstraction in the history of mathematics:

• "3 apples" \longrightarrow "3"

After that also (not necessarily in this order)

- negative numbers (abstraction of debt?)
- rational numbers (abstraction of proportions)
- real numbers (abstraction of lengths)

More examples

Groups

- Addition in ℤ, "clock" addition (mod *n*) and composing symmetries have similar properties.
- Isolate the properties.
- Define an abstract group.
- Get lots more examples, and a whole area of mathematics.

More examples

Groups

- Addition in ℤ, "clock" addition (mod *n*) and composing symmetries have similar properties.
- Isolate the properties.
- Define an abstract group.
- Get lots more examples, and a whole area of mathematics.

Equivalence relations

- Study equality, congruence (mod *n*) and "having same image under a function".
- Isolate: reflexivity, symmetry, transitivity.
- Define equivalence relation.
- Work with the abstract idea rather than one example

One more level of abstraction

We notice throughout our studies that certain objects come with special maps:

objects	"structure preserving" maps
sets	functions
groups	group homomorphisms
rings	ring homomorphisms
modules/vector spaces	linear maps
topological spaces	continuous maps

Category Theory Maths is Abstraction iversal Properties Category Theory: more abstraction

One more level of abstraction

What do they have in common?

One more level of abstraction

What do they have in common?

• We can compose them:

 $A \longrightarrow B \longrightarrow C$

Maths is Abstraction Category Theory: more abstraction

One more level of abstraction

What do they have in common?

• We can compose them:

 $A \longrightarrow B \longrightarrow C$

• There is an identity:

$$A \xrightarrow{f} B = A \xrightarrow{f} B = A \xrightarrow{f} B = A \xrightarrow{f} B$$

Maths is Abstraction Category Theory: more abstraction

One more level of abstraction

What do they have in common?

• We can compose them:

 $A \longrightarrow B \longrightarrow C$

• There is an identity:

$$A \xrightarrow{f} B = A \xrightarrow{f} B = A \xrightarrow{f} B = A \xrightarrow{f} B$$

Composition is associative: (*h*∘*g*)∘*f* = *h*∘(*g*∘*f*)

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$$

Definition of a category

- A category C consists of
 - a collection obC of objects A, B, C, \ldots and
 - for each pair of objects $A, B \in obC$, a collection $C(A, B) = Hom_{C}(A, B)$ of morphisms $f \colon A \longrightarrow B$,

equipped with

Definition of a category

- A category C consists of
 - a collection obC of objects A, B, C, ... and
 - for each pair of objects $A, B \in obC$, a collection $C(A, B) = Hom_{C}(A, B)$ of morphisms $f : A \longrightarrow B$,

equipped with

- for each $A \in ob\mathcal{C}$, a morphism $1_A : A \longrightarrow A$, the identity,
- for each tripel $A, B, C \in obC$, a composition

 $\circ : \operatorname{Hom}(A,B) imes \operatorname{Hom}(B,C) \longrightarrow \operatorname{Hom}(A,C)$ $(f,g) \longmapsto g \circ f$

such that the following axioms hold:

Definition of a category

- A category C consists of
 - a collection obC of objects A, B, C, ... and
 - for each pair of objects $A, B \in ob\mathcal{C}$, a collection $\mathcal{C}(A, B) = Hom_{\mathcal{C}}(A, B)$ of morphisms $f \colon A \longrightarrow B$,

equipped with

- for each $A \in ob\mathcal{C}$, a morphism $1_A : A \longrightarrow A$, the identity,
- for each tripel $A, B, C \in obC$, a composition

 $\circ : \operatorname{Hom}(A,B) imes \operatorname{Hom}(B,C) \longrightarrow \operatorname{Hom}(A,C)$ $(f,g) \longmapsto g \circ f$

such that the following axioms hold:

- **1** Identity: For $f: A \longrightarrow B$ we have $f \circ 1_A = f = 1_B \circ f$.
- ② Associativity: For *f*: *A* → *B*, *g*: *B* → *C* and *h*: *C* → *D* we have $h \circ (g \circ f) = (h \circ g) \circ f$.

What is Category Theory?

One more level of abstraction.
Category Theory is "mathematics about mathematics".

- A language for mathematicians.
- A way of thinking.

Maths is Abstraction Category Theory: more abstraction

Categorical point of view

In category theory:

We are not only interested in objects (such as sets, groups, ...), but how different objects of the same kind *relate* to each other. We are interested in global structures and connections.

Maths is Abstraction Category Theory: more abstraction

Categorical point of view

In category theory:

We are not only interested in objects (such as sets, groups, ...), but how different objects of the same kind *relate* to each other. We are interested in global structures and connections.

Motto of category theory

We want to really understand how and why things work, so that we can present them in a way which makes everything "look obvious".

Examples of categories

 Any collection of sets with a certain structure and structure-preserving maps will form a category.

But also:

Examples of categories

• Any collection of sets with a certain structure and structure-preserving maps will form a category.

But also:

- A group *G* is a one-object category with the group elements as morphisms:
 - $e \in G$ is identity morphism.
 - group multiplication is composition.

Examples of categories

• Any collection of sets with a certain structure and structure-preserving maps will form a category.

But also:

- A group *G* is a one-object category with the group elements as morphisms:
 - $e \in G$ is identity morphism.
 - group multiplication is composition.
- A poset *P* is a category:
 - The elements of *P* are the objects.
 - Hom(x, y) has one element if $x \le y$, empty otherwise.
 - Reflexivity gives identities.
 - Transitivity gives composition.

Category Theory Within one category Universal Properties Mixing categories

Category Theory

- Maths is Abstraction
- Category Theory: more abstraction

2 Universal Properties

- Within one category
- Mixing categories

Within one category Mixing categories

Universal Property Template

Template

 \mathcal{P} some property. A particular *X* is universal for \mathcal{P} if it has the property \mathcal{P} , and if any *Y* also has property \mathcal{P} , then there is a unique map between *X* and *Y* which "fits with the property \mathcal{P} ".

Within one category Mixing categories

Universal Property Template

Template

 \mathcal{P} some property. A particular *X* is universal for \mathcal{P} if it has the property \mathcal{P} , and if any *Y* also has property \mathcal{P} , then there is a unique map between *X* and *Y* which "fits with the property \mathcal{P} ".

Note: could be unique map $X \longrightarrow Y$ or $Y \longrightarrow X$. We specify this for each particular case.

Terminal objects

First example: property $\mathcal{P} =$ "is an object" ("empty property").

Terminal objects

First example: property $\mathcal{P} =$ "is an object" ("empty property").

Definition

An object $T \in ob\mathcal{C}$ is called terminal object when there is, for every $A \in ob\mathcal{C}$, a unique morphism $A \longrightarrow T$ in \mathcal{C} .

Terminal objects

First example: property $\mathcal{P} =$ "is an object" ("empty property").

Definition

An object $T \in ob\mathcal{C}$ is called terminal object when there is, for every $A \in ob\mathcal{C}$, a unique morphism $A \longrightarrow T$ in \mathcal{C} .

- Sets *X*: exactly one function $X \longrightarrow \{*\}$.
- Groups *G*: exactly one group hom $G \rightarrow 0 = \{e\}$.
- Vector spaces V: exactly one linear map $V \longrightarrow 0$.
- Top. spaces X: exactly one continuous map $X \longrightarrow \{*\}$.

 $\mathcal{P}=\mbox{``is an object", but "unique arrow from" rather than "unique arrow to".$

Definition

An object $I \in ob\mathcal{C}$ is called initial object when there is, for every $A \in ob\mathcal{C}$, a unique morphism $I \longrightarrow A$ in the category \mathcal{C} .

 $\mathcal{P}=\mbox{``is an object", but "unique arrow from" rather than "unique arrow to".$

Definition

An object $I \in ob\mathcal{C}$ is called initial object when there is, for every $A \in ob\mathcal{C}$, a unique morphism $I \longrightarrow A$ in the category \mathcal{C} .

- Groups *G*: exactly one group hom $0 \longrightarrow G$.
- Vector spaces V: exactly one linear map $0 \longrightarrow V$.
- Rings *R*: exactly one ring homomorphism $\mathbb{Z} \longrightarrow R$.

 $\mathcal{P}=\mbox{``is an object", but "unique arrow from" rather than "unique arrow to".$

Definition

An object $I \in ob\mathcal{C}$ is called initial object when there is, for every $A \in ob\mathcal{C}$, a unique morphism $I \longrightarrow A$ in the category \mathcal{C} .

- Groups *G*: exactly one group hom $0 \longrightarrow G$.
- Vector spaces V: exactly one linear map $0 \longrightarrow V$.
- Rings *R*: exactly one ring homomorphism $\mathbb{Z} \longrightarrow R$.
- Sets X: exactly one function $\varnothing \longrightarrow X$.

 $\mathcal{P}=\mbox{``is an object", but "unique arrow from" rather than "unique arrow to".$

Definition

An object $I \in ob\mathcal{C}$ is called initial object when there is, for every $A \in ob\mathcal{C}$, a unique morphism $I \longrightarrow A$ in the category \mathcal{C} .

- Groups *G*: exactly one group hom $0 \longrightarrow G$.
- Vector spaces V: exactly one linear map $0 \longrightarrow V$.
- Rings *R*: exactly one ring homomorphism $\mathbb{Z} \longrightarrow R$.
- Sets X: exactly one function $\varnothing \longrightarrow X$.
- Topological spaces: also Ø.

Category Theory Within Universal Properties Mixing

Within one category Mixing categories

Products

Products

Universal property of a product

Product is universal with property: equipped with a map to *A* and a map to *B*.

"Preserve the property": $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$.

Universal property of a product

Product is universal with property: equipped with a map to *A* and a map to *B*.

"Preserve the property": $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$.

Examples

Products

- Sets: cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$.
- Groups: cartesian product with pointwise group structure.

Universal property of a product

Product is universal with property: equipped with a map to *A* and a map to *B*.

"Preserve the property": $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$.

Examples

Products

- Sets: cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$.
- Groups: cartesian product with pointwise group structure.

Products

Universal property of a product

Product is universal with property: equipped with a map to *A* and a map to *B*.

"Preserve the property": $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$.

- Sets: cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$.
- Groups: cartesian product with pointwise group structure.
- Top. spaces:

Products

Universal property of a product

Product is universal with property: equipped with a map to *A* and a map to *B*.

"Preserve the property": $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$.

- Sets: cartesian product $A \times B = \{(a, b) \mid a \in A, b \in B\}$.
- Groups: cartesian product with pointwise group structure.
- Top. spaces: cartesian product with the product topology.

Category Theory With Universal Properties Mixi

Within one category Mixing categories

Coproducts

Within one category Mixing categories

Coproducts

Universal property of a coproduct

Property: equipped with a map from *A* and a map from *B*. "Preserve the property": $h \circ \iota_1 = f$ and $h \circ \iota_2 = g$.

Within one category Mixing categories

Coproducts

Universal property of a coproduct

Property: equipped with a map from *A* and a map from *B*. "Preserve the property": $h \circ \iota_1 = f$ and $h \circ \iota_2 = g$.

- disjoint union of sets $A \coprod B$.
- disjoint union of topological spaces.
- free product of groups G * H.
- (external) direct sum of modules $M \oplus N = M \times N$.

A stranger example

Poset as category: Hom(x, y) has one element if $x \le y$, empty otherwise.

Universal properties in a poset

- Terminal object is "top element" (if it exists).
- Initial object is "bottom element" (if it exists).
- Products are meets (e.g. in a powerset: intersection).
- Coproducts are joins (e.g. in a powerset: union).

Any universal object is unique (up to iso)

• Suppose X, Y both universal for \mathcal{P} .

- Suppose X, Y both universal for \mathcal{P} .
- \exists unique $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ "commuting with \mathcal{P} ".

- Suppose X, Y both universal for \mathcal{P} .
- \exists unique $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ "commuting with \mathcal{P} ".
- Then $g \circ f \colon X \longrightarrow X$ also "commutes with \mathcal{P} ".

- Suppose X, Y both universal for \mathcal{P} .
- \exists unique $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ "commuting with \mathcal{P} ".
- Then $g \circ f \colon X \longrightarrow X$ also "commutes with \mathcal{P} ".
- Identity $1_X : X \longrightarrow X$ always "commutes with \mathcal{P} ".

- Suppose X, Y both universal for \mathcal{P} .
- \exists unique $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ "commuting with \mathcal{P} ".
- Then $g \circ f \colon X \longrightarrow X$ also "commutes with \mathcal{P} ".
- Identity $1_X : X \longrightarrow X$ always "commutes with \mathcal{P} ".
- But have unique such: so $1_X = g \circ f$.

- Suppose X, Y both universal for \mathcal{P} .
- \exists unique $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ "commuting with \mathcal{P} ".
- Then $g \circ f \colon X \longrightarrow X$ also "commutes with \mathcal{P} ".
- Identity $1_X : X \longrightarrow X$ always "commutes with \mathcal{P} ".
- But have unique such: so $1_X = g \circ f$.
- Similarly $1_Y = f \circ g$.

- Suppose X, Y both universal for \mathcal{P} .
- \exists unique $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ "commuting with \mathcal{P} ".
- Then $g \circ f \colon X \longrightarrow X$ also "commutes with \mathcal{P} ".
- Identity $1_X : X \longrightarrow X$ always "commutes with \mathcal{P} ".
- But have unique such: so $1_X = g \circ f$.
- Similarly $1_Y = f \circ g$.
- So $X \cong Y$.

Turning around arrows

Initial is "opposite" of terminal

- Terminal *T*: for all *A*, \exists ! map *A* \longrightarrow *T*.
- Initial *I*: for all A, \exists ! map $A \leftarrow I$.

Turning around arrows

Initial is "opposite" of terminal

- Terminal T: for all A, $\exists ! \text{ map } A \longrightarrow T$.
- Initial *I*: for all A, \exists ! map $A \leftarrow I$.

Coproduct is "opposite" of product

Coinciding properties

Zero objects

- For groups and modules, initial = terminal.
- Define zero-object 0 to be both initial and terminal.
- Gives at least one map between any two objects:

 $A \longrightarrow 0 \longrightarrow B$

Coinciding properties

Zero objects

- For groups and modules, initial = terminal.
- Define zero-object 0 to be both initial and terminal.
- Gives at least one map between any two objects:

 $A \longrightarrow 0 \longrightarrow B$

Direct products

- Direct product is both product and coproduct.
- E.g. direct sum of modules (vector spaces, abelian groups...)

Within one category Mixing categories

Universal property of a kernel

Kernel of f is universal map whose post-composition with f is zero.

Kernels

Universal property of a kernel

Kernel of f is universal map whose post-composition with f is zero.

In terms of elements

 $K = \{k \in A \mid f(k) = 0\}, k \text{ the inclusion into } A.$

Kernels

Within one category Mixing categories

Cokernels: "turn around the arrows"

Universal property of a cokernel

Cokernel of f is universal map whose pre-composition with f is zero.

Within one category Mixing categories

Cokernels: "turn around the arrows"

Universal property of a cokernel

Cokernel of f is universal map whose pre-composition with f is zero.

In modules/vector spaces/abelian groups

 $Q = B/\text{Im}(f) = \{b + \text{Im}(f)\}, q$ the quotient map.

$$A \longrightarrow \operatorname{Im}(f) \longmapsto B \longrightarrow B/\operatorname{Im}(f)$$

Julia Goedecke (Newnham)

Within one category Mixing categories

Tensor Product

Tensor Product of Vector Spaces/Modules

$$V \times W \xrightarrow{\varphi} V \otimes W$$

 φ is universal bilinear map out of $V \times W$, tensor product $U \otimes V$ "makes bilinear *h* into linear \overline{h} ".

Within one category Mixing categories

Tensor Product

Tensor Product of Vector Spaces/Modules

$$V \times W \xrightarrow{\varphi} V \otimes W$$

 φ is universal bilinear map out of $V \times W$, tensor product $U \otimes V$ "makes bilinear *h* into linear \overline{h} ".

Construction

- Actual construction is complicated and slightly tedious.
- Working with universal property is often easier than with the elements.

Within one category Mixing categories

Abelianisation

Abelianisation of a group

Every group hom to an abelian group *A* factors uniquely through the abelianisation.

Abelianisation

Abelianisation of a group

Every group hom to an abelian group *A* factors uniquely through the abelianisation.

Construction

• ab *G* = *G*/[*G*, *G*]

 [G, G] is commutator: normal subgroup generated by all aba⁻¹b⁻¹.

Within one category Mixing categories

Field of fractions

Field of fractions of an integral domain

Every injective ring hom to a field K factors uniquely through the field of fractions.

"Smallest field into which R can be embedded."

Within one category Mixing categories

Field of fractions

Field of fractions of an integral domain

Every injective ring hom to a field K factors uniquely through the field of fractions.

"Smallest field into which R can be embedded."

Construction

- $F = \{(a, b) \in R \times R \mid b \neq 0\} / \sim$
- equivalence relation ~ is $(a, b) \sim (c, d)$ iff ad = bc.

Within one category Mixing categories

Stone-Čech Compactification

Compactification of a topological space

Every continuous map to a compact Hausdorff space K factors uniquely through the Stone-Čech compactification.

Within one category Mixing categories

Stone-Čech Compactification

Compactification of a topological space

Every continuous map to a compact Hausdorff space K factors uniquely through the Stone-Čech compactification.

Generalisation

Abelianisation and Stone-Čech compactification are examples of adjunctions: very important concept in Category Theory.

Advantages of Universal Properties

• Tidyier: details may be messy, working with universal property can give clear and elegant proofs.

Advantages of Universal Properties

- Tidyier: details may be messy, working with universal property can give clear and elegant proofs.
- Transferable: situations with different details may have same universal property: transfer ideas/proofs/...

Why bother?

Advantages of Universal Properties

- Tidyier: details may be messy, working with universal property can give clear and elegant proofs.
- Transferable: situations with different details may have same universal property: transfer ideas/proofs/...
- Functorial: defining things via universal properties gives them good categorical properties (used all over maths).

Why bother?

Advantages of Universal Properties

- Tidyier: details may be messy, working with universal property can give clear and elegant proofs.
- Transferable: situations with different details may have same universal property: transfer ideas/proofs/...
- Functorial: defining things via universal properties gives them good categorical properties (used all over maths).
- Useful: e.g. to show two objects are isomorphic, show they satisfy same universal property.

Thanks for listening!

Julia Goedecke (Newnham)