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Higher extensions Definitions
The first three axioms
Symmetry

Higher arrows

Formal definition:
Ar®A = A,
ArrA = Fun(2°P, A)
Arr™t A = ArrArrA
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Higher extensions Definitions
The first three axioms
Symmetry

Higher arrows

Formal definition:

ArlA = A,
ArrA = Fun(2°, A)
Arr™1 A = ArrArrA

Higher arrows can be thought of as cubes with directions:

double arrow:

A1 $B~|
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Higher extensions Definitions
The first three axioms
Symmetry

Higher arrows

Formal definition:
Arr® A = A,
ArrA = Fun(2°, A)
A" 1A = ArrAreA

Higher arrows can be thought of as cubes with directions:
three-fold arrow:

A{g’o} e A1

% /!

As— > A
\'2

Ay > A

A /1
Af12y — Aqty
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The first three axioms
Symmetry

Double extensions

£ a class of extensions. Double extension:
fy
A1 E— B1

= o

AO —_—> BO
fo
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Higher extensions Definitions
The first three axioms
Symmetry

Double extensions

£ a class of extensions. Double extension:

with all morphisms in £.
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Higher extensions

@ &' class of double extensions.
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Higher extensions

@ &' class of double extensions.
@ Inductively get £7 = (£7-")", class of n-fold extensions.
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Higher extensions

@ &' class of double extensions.

@ Inductively get £7 = (£7-")", class of n-fold extensions.
@ ExtA full subcat of Arr.A determined by &,

@ similarly Ext”A determined by £ 1.
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Higher extensions Definitions
The first three axioms
Symmetry

Higher extensions

@ &' class of double extensions.

@ Inductively get £7 = (£7-")", class of n-fold extensions.
@ ExtA full subcat of Arr.A determined by &,

@ similarly Ext”A determined by £ 1.

Have pairs
@ (A,¢)
o (ExtA, &M
o (ExtA4,EM
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Higher extensions Definitions
The first three axioms
Symmetry

The first three axioms

Let (A, &) satisfy

(E1) & contains all isomorphisms;
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The first three axioms
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The first three axioms

Let (A, &) satisfy

(E1) & contains all isomorphisms;
(E2) pullbacks of extensions exist in A and are extensions;
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The first three axioms
Symmetry

The first three axioms

Let (A, &) satisfy

(E1) & contains all isomorphisms;
(E2) pullbacks of extensions exist in A and are extensions;
(E3) €& is closed under composition.
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Higher extensions Definitions
The first three axioms
Symmetry

The first three axioms

Let (A, &) satisfy
(E1) & contains all isomorphisms;
(E2) pullbacks of extensions exist in A and are extensions;

(E3) €& is closed under composition.

If (A, &) satisfies these, then so does (ExtA, ).
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Higher extensions Definitions
The first three axioms
Symmetry

Examples

@ absolute case: regular epis in a regular category
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Examples

@ absolute case: regular epis in a regular category
@ Projective classes in a finitely complete category
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Higher extensions Definitions
The first three axioms
Symmetry

Examples

@ absolute case: regular epis in a regular category
@ Projective classes in a finitely complete category

@ Topological groups with morphisms which are split as
morphisms of topological spaces
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Higher extensions Definitions
The first three axioms
Symmetry

Examples

@ absolute case: regular epis in a regular category
@ Projective classes in a finitely complete category

@ Topological groups with morphisms which are split as
morphisms of topological spaces

@ R-modules with morphisms split in Ab

@ trivial extensions (from categorical Galois theory) in a
regular protomodular category
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Higher extensions Definitions
The first three axioms
Symmetry

Examples

absolute case: regular epis in a regular category
Projective classes in a finitely complete category

Topological groups with morphisms which are split as
morphisms of topological spaces

R-modules with morphisms split in Ab

trivial extensions (from categorical Galois theory) in a
regular protomodular category

effective descent morphisms in a category with pullbacks
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Higher extensions Definitions
The first three axioms
Symmetry

Alternative definition for extensions

Another way of looking at extensions:
@ all codomain (n— 1)-cubes are extensions;
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Higher extensions Definitions
The first three axioms
Symmetry

Alternative definition for extensions

Another way of looking at extensions:
@ all codomain (n — 1)-cubes are extensions;
@ comparison to limit without “initial corner” is also extension.
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Higher extensions Definitions
The first three axioms
Symmetry

Alternative definition for extensions

Another way of looking at extensions:
@ all codomain (n — 1)-cubes are extensions;
@ comparison to limit without “initial corner” is also extension.
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Higher extensions Definitions
The first three axioms
Symmetry

Extensions are symmetric

This makes it easy to see the symmetry of higher extensions:

A1 $B1

l J/ (fi,fh): a— b is an n-extension
a = b

AO —_— Bo
fo
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Higher extensions Definitions
The first three axioms
Symmetry

Extensions are symmetric

This makes it easy to see the symmetry of higher extensions:

fi
A1 I B1
l ' J/b (fi,fh): a— b is an n-extension
a
iff (a,b): ff — fy is an n-extension.
AO fH Bo
0
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Higher extensions Definitions
The first three axioms
Symmetry

Extensions are symmetric

This makes it easy to see the symmetry of higher extensions:

A1 f% B1
l ' J/b (fi,fh): @a— b is an n-extension
a
iff (a,b): ff — fy  is an n-extension.
AO fH Bo
0

A0y —> Ay

! /!

A3 %Ag

\%
Apy - > Ag
R Ve

Apr2y —> Ay
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Definition
E-resolutions Truncations
Resolutions and extensions

E-semi-simplicial objects

A (semi)-simplicial object A is an £-(semi)-simplicial object
when all face maps 9; are in £.

9o 3
0

A B A TR A
X O
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Definition
E-resolutions Truncations
Resolutions and extensions

E-semi-simplicial objects

An augmented (semi)-simplicial object A is an
E-(semi)-simplicial object when all face maps 0, are in £.

1o P
— LN 2
. 'A2 —O01— A1 4|>A0 —>A_4
X O
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Definition
E-resolutions Truncations
Resolutions and extensions

E-resolutions

Factor £-(semi)-simplicial object over its simplicial kernels:

g%m A ———> A

\//\/
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Definition
E-resolutions Truncations
Resolutions and extensions

E-resolutions

Factor £-(semi)-simplicial object over its simplicial kernels:

This is an £-resolution when all factorisations are in £.
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Definition
£-resolutions Truncations
Resolutions and extensions

Truncations

Let A be an augmented (semi)-simplicial object. Truncation at
level n gives (n+ 1)-fold arrow:
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Definition
£-resolutions Truncations
Resolutions and extensions

Truncations

Let A be an augmented (semi)-simplicial object. Truncation at
level n gives (n+ 1)-fold arrow:

n=20
As—25 A
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Definition
£-resolutions Truncations
Resolutions and extensions

Truncations

Let A be an augmented (semi)-simplicial object. Truncation at
level n gives (n+ 1)-fold arrow:

n=1
(90 80
A1 ; Ao — A_1
04
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Definition
£-resolutions Truncations
Resolutions and extensions

Truncations

Let A be an augmented (semi)-simplicial object. Truncation at
level n gives (n+ 1)-fold arrow:

n=1
A16H1A0

o |

AoHA 1
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Definition
£-resolutions Truncations
Resolutions and extensions

Truncations

Let A be an augmented (semi)-simplicial object. Truncation at
level n gives (n+ 1)-fold arrow:

n=2
o )
— 0. 0
A2 —O01> A1 < Ao LN A_1
9o 01
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Definition
£-resolutions Truncations
Resolutions and extensions

Truncations

Let A be an augmented (semi)-simplicial object. Truncation at
level n gives (n+ 1)-fold arrow:

n=2
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Definition
£-resolutions Truncations
Resolutions and extensions

Truncations

Let A be an augmented (semi)-simplicial object. Truncation at
level n gives (n+ 1)-fold arrow:

n=2
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Definition
E-resolutions Truncations
Resolutions and extensions

Resolutions and extensions

A is an E-resolution if and only if all truncations are extensions.
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Resolutions and extensions

A is an E-resolution if and only if all truncations are extensions.
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Definition
E-resolutions Truncations
Resolutions and extensions

Slogans

@ Simplicial resolutions are infinite-dimensional extensions.
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Definition
E-resolutions Truncations
Resolutions and extensions

Slogans

@ Simplicial resolutions are infinite-dimensional extensions.

@ Higher extensions are finite dimensional (approximations
to) resolutions.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

The relative Mal’'tsev axiom

We now add axioms
(E4) if f e £and gof € Etheng € &;
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

The relative Mal’'tsev axiom

We now add axioms

(E4) if fe £and gof € Ethen g € &; SN
(E5) the £-Mal'tsev condition:
f
A—+B Given a split epi of extensions in A
aﬁ bi with a and b also extensions,
A — B, the square is a double extension.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

The relative Mal’'tsev axiom

We now add axioms

(E4) if f e £and gof € Etheng € &; —_——
(E5) the £-Mal'tsev condition:
f
A—+B Given a split epi of extensions in A
aﬁ bi with a and b also extensions,
A — B, the square is a double extension.

(F) if f factors as f = em with m mono and e € £, then also as

f = m'ée with m mono, & € £ e’i le
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Relative Mal’tsev category

A relative Mal'tsev category is a pair (A, E), where A is a
category with finite products and £ a class of regular
epimorphisms in A, which satisfies (E1)—(E5) and (F).
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Axiom (E5)

Under (E1)—(E4), the axiom (E5) implies
@ Given

o
Rl —= A—+oB
ri b Jf with a, b, f, f' € €. Then
re& e (f,f)yecl

AIf| —2 A — B
7r4

Higher extensions and the relative Kan property CT2010

Julia Goedecke (UCLouvain)
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The relative Kan property
The relative Kan property Adding split epis

Axiom (E5)

Under (E1)—(E4), the axiom (E5) implies
@ Given

o
Rl —= A—+oB
ri b Jf with a, b, f, f' € €. Then
re& e (f,f)yecl

AIf| —2 A — B
7r4

Q iffe&landgof € E'thenge &',
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Axiom (E5)

Under (E1)—(E4), the axiom (E5) implies
@ Given

o
Rl —=2A—+B
ri b Jf with a, b, f, f' € €. Then

5 ref e (f,f)e&;
RIf] —= A ——+8
7r4

Q iffe&landgof € E'thenge &',
If (F) also holds, then (1) implies (E5).
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Going up

If (A, £) satisfies (E1)—(E5), so does (ExtA,£&").
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Going up

If (A, £) satisfies (E1)—(E5), so does (ExtA,£&").
But (F) does not go up in general:

@ If A semi-abelian, £ regular epis, (F) goes up one step.
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Relative Mal'tsev Categories
The relative Kan property
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Going up

If (A, £) satisfies (E1)—(E5), so does (ExtA,£&").
But (F) does not go up in general:

@ If A semi-abelian, £ regular epis, (F) goes up one step.

@ If (A, &) as above with non-trivial abelian object, (F) does
not go up two steps.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Going up

If (A, £) satisfies (E1)—(E5), so does (ExtA,£&").
But (F) does not go up in general:
@ If A semi-abelian, £ regular epis, (F) goes up one step.

@ If (A, &) as above with non-trivial abelian object, (F) does
not go up two steps.

@ But sometimes we don’t need (F) and then results go up.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Horn objects

Horn objects A(n, k):
universal object of “collection of horns” in the simplicial
object A.

%A

0

<7

A2, 1)
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Relative Mal'tsev Categories
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The relative Kan property

@ Horn objects exist when A is an £-semi-simplicial object.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

The relative Kan property

@ Horn objects exist when A is an £-semi-simplicial object.
@ An £-semi-simplicial object is £-Kan if all comparison maps

An — A(n, k)

arein €&.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Why “Mal’tsev”

Theorem

When A has finite products and £ is a class of regular

epimorphisms satisfying (E1)—(E4) and (F), then the following
are equivalent:

@ (E5) holds;
Q@ every £-simplicial object in A is £-Kan;
Q every reflexive £ -relation is an & -equivalence relation.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Why “Mal’tsev”

Theorem

When A has finite products and & is a class of regular
epimorphisms satisfying (E1)—(E4) and (F), then the following
are equivalent:

@ (E5) holds;
@ every £-simplicial object in A is £-Kan;
© every reflexive £-relation is an £-equivalence relation.

“absolute” result (2)<(3) by Carboni, Kelly, Pedicchio, 1993
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Proof sketches

Proof of (1) to (2) doesn’t need (F), uses

04 E)
Az —8—5 Ao j A4
s 2
o) 0o 9o
a o,
A —o—=5 Ay aﬁ Ag
[s)) 0

and induction, so needs (E1)—(E5) to go up.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Proof sketches

For (2) to (1) need (F):
@ Construct truncated £-simplicial object with contraction;
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Proof sketches

For (2) to (1) need (F):
@ Construct truncated £-simplicial object with contraction;
@ this extends to contractible simplicial object which is £-Kan;
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Proof sketches

For (2) to (1) need (F):
@ Construct truncated £-simplicial object with contraction;
@ this extends to contractible simplicial object which is £-Kan;
@ &-Kan + contractible = £-resolution (uses (F)).
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

E-relations

For (2) & (3) use (almost) same proof as in “absolute” case,
using e.g.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

E-relations

For (2) & (3) use (almost) same proof as in “absolute” case,
using e.g.
@ Every reflexive E-relation is an equivalence &-relation iff
RS = SR for any equivalence £-relations R and S.
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The relative Kan property Adding split epis

E-relations

For (2) & (3) use (almost) same proof as in “absolute” case,
using e.g.

@ Every reflexive E-relation is an equivalence &-relation iff
RS = SR for any equivalence £-relations R and S.

An E-relation is a relation (R, ry, r1) with ry and rq in €.
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

E-relations

For (2) & (3) use (almost) same proof as in “absolute” case,
using e.g.

@ Every reflexive E-relation is an equivalence &-relation iff
RS = SR for any equivalence £-relations R and S.

An E-relation is a relation (R, ry, r1) with ry and rq in €.

Need (F) for composition of relations.
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Examples

@ absolute case: regular epis in a regular Mal’tsev category
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Examples

@ absolute case: regular epis in a regular Mal’tsev category

@ relative homological and semi-abelian categories
(T. Janelidze)
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Examples

@ absolute case: regular epis in a regular Mal’tsev category
@ relative homological and semi-abelian categories
(T. Janelidze)
@ ftrivial extensions (from categorical Galois theory) in a
regular protomodular category
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Examples

@ absolute case: regular epis in a regular Mal’tsev category

@ relative homological and semi-abelian categories
(T. Janelidze)

@ ftrivial extensions (from categorical Galois theory) in a
regular protomodular category

@ composition of central extensions (Hugq: [K[f],A] = 0) in a
semi-abelian category
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Adding split epis

When all split epis are in &, get
(E4*) if gf € Ethen g € &; NN,

Julia Goedecke (UCLouvain) Higher extensions and the relative Kan property CT2010
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The relative Kan property
The relative Kan property Adding split epis

Adding split epis

When all split epis are in &, get

(E4*) if gf € Ethen g € &; .. 9.,
H . H
(E5) if gf € £ then g € &1, l l l
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Relative Mal'tsev Categories
The relative Kan property
The relative Kan property Adding split epis

Adding split epis

When all split epis are in &, get

(E4*) if gf € Ethen g € &; .. 9.,
H . H
(E5) if gf € £ then g € &1, l l l

Almost all results hold even without (F).
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Summary

Summary

Given (E1)—(E3)
@ Being an extension is symmetric.
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Summary

Given (E1)—(E3)
@ Being an extension is symmetric.
@ A is aresolution if and only if all truncations are extensions.
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Summary

Summary

Given (E1)—(E3)

@ Being an extension is symmetric.

@ A is aresolution if and only if all truncations are extensions.
Given (E1)—(E4) and (F)

@ Relative Mal’tsev category:
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Summary

Summary

Given (E1)—(E3)

@ Being an extension is symmetric.

@ A is aresolution if and only if all truncations are extensions.
Given (E1)—(E4) and (F)

@ Relative Mal’tsev category:

A satisfies (E5)
< all &-simplicial objects are £-Kan
< any reflexive &£-relation is an equivalence £-relation.
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Summary

Further results

Can use this setting to show in a relative semi-abelian
category:
@ Ais an £-resolution if and only if its Moore complex is
£-exact;
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Summary

Further results

Can use this setting to show in a relative semi-abelian
category:
@ A is an £-resolution if and only if its Moore complex is
£-exact;
@ two simplicially homotopic maps give rise to same
homology.
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Summary

Further results

Can use this setting to show in a relative semi-abelian
category:

@ A is an £-resolution if and only if its Moore complex is
£-exact;

@ two simplicially homotopic maps give rise to same
homology.

So can define homology of an object with coefficients in a
relative semi-abelian category.

Julia Goedecke (UCLouvain) Higher extensions and the relative Kan property CT2010



Summary

Thank you for listening!
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