The fundamental group functor as a Kan extension

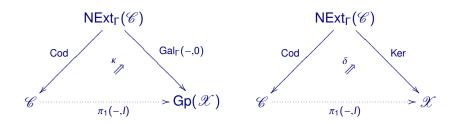
Julia Goedecke

University of Cambridge

joint work with Tomas Everaert and Tim Van der Linden

7 - 13 July 2013, CT13 Sydney

Aim of the talk



- In topological example gives some universal properties of the "usual" fundamental group, and also the connecting homomorphism in exact sequence induced by a fibration.
- In algebraic examples gives another approach to semi-abelian homology, and again some information about a connecting homomorphism.

- In topological example gives some universal properties of the "usual" fundamental group, and also the connecting homomorphism in exact sequence induced by a fibration.
- In algebraic examples gives another approach to semi-abelian homology, and again some information about a connecting homomorphism.

Definitions Galois group

Galois structures

Definition (Janelidze)

A Galois structure Γ consists of an adjunction

$$\mathscr{C} \xrightarrow[]{\frac{1}{\swarrow}}_{\underset{H}{\swarrow}} \mathscr{X}$$

with unit η and counit ϵ , as well as classes of maps \mathscr{E} in \mathscr{C} and \mathscr{F} in \mathscr{X} satisfying certain axioms.

Definitions Galois group

Examples of Galois structures

• Groups with subcategory abelian groups, regular epis.

- Semi-abelian $\mathscr C$ with Birkhoff subcategory, regular epis.
- Locally connected topological spaces and sets. *H* is discrete topology functor,
 - $I = \pi_0$, connected components functor.

 $\mathscr{E} =$ local homeomorphisms (étale maps), $\mathscr{F} =$ all maps.

 Opposite of finite dimensional k-algebras, finite sets, each with all maps. The adjunction is defined through idempotent decomposition of k-algebras: a k-algebra is sent to its set of primitive idempotents.

Definitions Galois group

Examples of Galois structures

- Groups with subcategory abelian groups, regular epis.
- Semi-abelian $\mathscr C$ with Birkhoff subcategory, regular epis.
- Locally connected topological spaces and sets. *H* is discrete topology functor,
 - $I = \pi_0$, connected components functor.

 $\mathscr{E} =$ local homeomorphisms (étale maps), $\mathscr{F} =$ all maps.

 Opposite of finite dimensional k-algebras, finite sets, each with all maps. The adjunction is defined through idempotent decomposition of k-algebras: a k-algebra is sent to its set of primitive idempotents.

Definitions Galois group

Examples of Galois structures

- Groups with subcategory abelian groups, regular epis.
- Semi-abelian $\mathscr C$ with Birkhoff subcategory, regular epis.
- Locally connected topological spaces and sets. *H* is discrete topology functor,
 - $I = \pi_0$, connected components functor.
 - $\mathscr{E} = \text{local homeomorphisms}$ (étale maps), $\mathscr{F} = \text{all maps}$.
- Opposite of finite dimensional k-algebras, finite sets, each with all maps. The adjunction is defined through idempotent decomposition of k-algebras: a k-algebra is sent to its set of primitive idempotents.

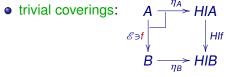
Definitions Galois group

Examples of Galois structures

- Groups with subcategory abelian groups, regular epis.
- Semi-abelian $\mathscr C$ with Birkhoff subcategory, regular epis.
- Locally connected topological spaces and sets. *H* is discrete topology functor,
 - $I = \pi_0$, connected components functor.
 - $\mathscr{E} = \text{local homeomorphisms}$ (étale maps), $\mathscr{F} = \text{all maps}$.
- Opposite of finite dimensional k-algebras, finite sets, each with all maps. The adjunction is defined through idempotent decomposition of k-algebras: a k-algebra is sent to its set of primitive idempotents.

Definitions

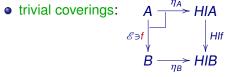
Special maps in Galois structures



- monadic extensions: $p: E \longrightarrow B$ in \mathscr{E} with
- coverings (or central extensions): $f \in \mathcal{E}$ with $p^*(f)$ trivial for
- normal extensions: monadic p with trivial kernel pair

Definitions

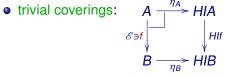
Special maps in Galois structures



- monadic extensions: $p: E \longrightarrow B$ in \mathscr{E} with $p^*: (\mathscr{E} \downarrow B) \longrightarrow (\mathscr{E} \downarrow E)$ monadic. (good to pull back along)
- coverings (or central extensions): $f \in \mathcal{E}$ with $p^*(f)$ trivial for
- normal extensions: monadic p with trivial kernel pair

Definitions

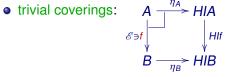
Special maps in Galois structures



- monadic extensions: $p: E \longrightarrow B$ in \mathscr{E} with $p^*: (\mathscr{E} \downarrow B) \longrightarrow (\mathscr{E} \downarrow E)$ monadic. (good to pull back along)
- coverings (or central extensions): $f \in \mathscr{E}$ with $p^*(f)$ trivial for some monadic p. (locally trivial)
- normal extensions: monadic p with trivial kernel pair

Definitions

Special maps in Galois structures



- monadic extensions: $p: E \longrightarrow B$ in \mathscr{E} with $p^*: (\mathscr{E} \downarrow B) \longrightarrow (\mathscr{E} \downarrow E)$ monadic. (good to pull back along)
- coverings (or central extensions): $f \in \mathscr{E}$ with $p^*(f)$ trivial for some monadic p. (locally trivial)
- normal extensions: monadic p with trivial kernel pair projections.

Definitions Galois group

- Groups with abelian groups:
 - monadic extensions: all regular epis.
 - central extensions as usual, kernel inside centre;
- topological example:
 - monadic extensions: surjective étale maps;
 - coverings: usual topological sense;
 - normal extensions: regular coverings.
- In many algebraic examples, central = normal.

Definitions Galois group

- Groups with abelian groups:
 - monadic extensions: all regular epis.
 - central extensions as usual, kernel inside centre;
- topological example:
 - monadic extensions: surjective étale maps;
 - coverings: usual topological sense;
 - normal extensions: regular coverings.
- In many algebraic examples, central = normal.

Definitions Galois group

- Groups with abelian groups:
 - monadic extensions: all regular epis.
 - central extensions as usual, kernel inside centre;
- topological example:
 - monadic extensions: surjective étale maps;
 - coverings: usual topological sense;
 - normal extensions: regular coverings.
- In many algebraic examples, central = normal.

Definitions Galois group

Admissibility

- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When & is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of ℱ in 𝒞.".
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

Definitions Galois group

Admissibility

- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When & is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of ℱ in 𝒞.".
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

Admissibility

- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When & is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of ℱ in 𝒞."
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

Admissibility

- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When & is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of ${\mathscr F}$ in ${\mathscr C}$ ".
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

Admissibility

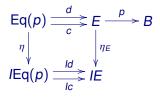
- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When & is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of ${\mathscr F}$ in ${\mathscr C}$ ".
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

Definitions Galois group

Galois groupoid (Janelidze)

Take \mathscr{C} pointed and $p: E \longrightarrow B$ normal extension.

• Galois groupoid $Gal_{\Gamma}(p) = IEq(p)$



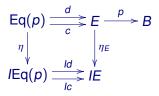
- Still groupoid, as *I* preserves defining pullbacks, because *d* and *c* trivial.
- Galois group Gal_Γ(p, 0) = Ker Id ∩ Ker Ic automorphisms at 0

Definitions Galois group

Galois groupoid (Janelidze)

Take \mathscr{C} pointed and $p: E \longrightarrow B$ normal extension.

• Galois groupoid $Gal_{\Gamma}(p) = IEq(p)$



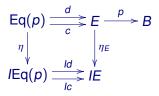
- Still groupoid, as *I* preserves defining pullbacks, because *d* and *c* trivial.
- Galois group Gal_Γ(p, 0) = Ker Id ∩ Ker Ic automorphisms at 0

Definitions Galois group

Galois groupoid (Janelidze)

Take \mathscr{C} pointed and $p: E \longrightarrow B$ normal extension.

• Galois groupoid $Gal_{\Gamma}(p) = IEq(p)$



- Still groupoid, as *I* preserves defining pullbacks, because *d* and *c* trivial.
- Galois group Gal_Γ(p, 0) = Ker Id ∩ Ker Ic automorphisms at 0

Definitions Galois group

Properties of Galois group functor

Morphisms in $NExt_{\Gamma}(\mathscr{C})$

induce

- homotopy on kernel pairs and Galois groupoids,
- same morphism $\operatorname{Gal}_{\Gamma}(p,0) \longrightarrow \operatorname{Gal}_{\Gamma}(p',0)$ on Galois group.
- $(f, 1_B): p \longrightarrow p$ induces identity on Galois group.

Definitions Galois group

Properties of Galois group functor

Morphisms in $NExt_{\Gamma}(\mathscr{C})$

induce

- homotopy on kernel pairs and Galois groupoids,
- same morphism $\operatorname{Gal}_{\Gamma}(p,0) \longrightarrow \operatorname{Gal}_{\Gamma}(p',0)$ on Galois group.

• $(f, 1_B): p \longrightarrow p$ induces identity on Galois group.

Definitions Galois group

Properties of Galois group functor

Morphisms in NExt_{Γ}(\mathscr{C})

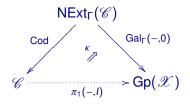
induce

- homotopy on kernel pairs and Galois groupoids,
- same morphism $\operatorname{Gal}_{\Gamma}(p,0) \longrightarrow \operatorname{Gal}_{\Gamma}(p',0)$ on Galois group.
- $(f, 1_B): p \longrightarrow p$ induces identity on Galois group.

Definition Kan extension

Fundamental group functor

Now assume that weakly universal normal extensions exist.



Definition (Janelidze)

Given $B \in \mathcal{C}$, pick weakly universal normal extension $u: U \longrightarrow B$, and let

 $\pi_1(B,I) = \operatorname{Gal}_{\Gamma}(u,0).$

Functorial in B because of induced homotopies.

Julia Goedecke (Cambridge)

Definition Kan extension

- Groups and abelian groups: get π₁(B, I) = H₂(B, Z) (group homology).
- Topological example: get usual fundamental group.

Definition Kan extension

- Groups and abelian groups: get π₁(B, I) = H₂(B, Z) (group homology).
- Topological example: get usual fundamental group.

Definition Kan extension

Natural transformation κ

$$\kappa \colon \pi_1(-, I) \circ \operatorname{Cod} \Longrightarrow \operatorname{Gal}_{\Gamma}(-, 0)$$

has components

$$\kappa_p \colon \pi_1(B, I) = \operatorname{Gal}_{\Gamma}(u, 0) \longrightarrow \operatorname{Gal}_{\Gamma}(p, 0)$$

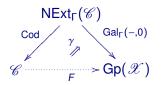
for normal extension $p: E \longrightarrow B$, induced by (any)

That is, $\kappa_p = \operatorname{Gal}_{\Gamma}((h, 1_B), 0)$.

Definition Kan extension

Universality of κ

Given

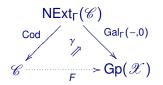


- α is natural by naturality of γ ;
- $\kappa_{p} \circ \alpha_{\text{Cod}\,p} = \gamma_{p}$ for all normal extensions *p*, by naturality of γ ;
- α is unique: given β with $\kappa_p \circ \beta_{\text{Cod}\,p} = \gamma_p$ for all normal p, get $\alpha_B = \beta_B$ as κ_u is an iso for weakly universal u.

Definition Kan extension

Universality of κ

Given

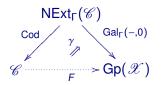


- α is natural by naturality of γ ;
- $\kappa_{p} \circ \alpha_{\text{Cod}\,p} = \gamma_{p}$ for all normal extensions p, by naturality of γ ;
- α is unique: given β with $\kappa_p \circ \beta_{\text{Cod}\,p} = \gamma_p$ for all normal p, get $\alpha_B = \beta_B$ as κ_u is an iso for weakly universal u.

Definition Kan extension

Universality of κ

Given

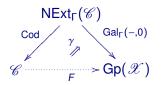


- α is natural by naturality of γ ;
- $\kappa_{p} \circ \alpha_{\text{Cod}\,p} = \gamma_{p}$ for all normal extensions *p*, by naturality of γ ;
- α is unique: given β with $\kappa_p \circ \beta_{\text{Cod}\,p} = \gamma_p$ for all normal p, get $\alpha_B = \beta_B$ as κ_u is an iso for weakly universal u.

Definition Kan extension

Universality of κ

Given

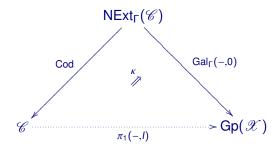


- α is natural by naturality of γ ;
- $\kappa_p \circ \alpha_{\text{Cod}\,p} = \gamma_p$ for all normal extensions *p*, by naturality of γ ;
- α is unique: given β with $\kappa_p \circ \beta_{\text{Cod}\,p} = \gamma_p$ for all normal p, get $\alpha_B = \beta_B$ as κ_u is an iso for weakly universal u.

Definition Kan extension

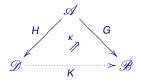
Kan extension

So indeed we have a Kan extension



Definition Kan extension

What we used

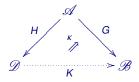


• $H(f) = H(g) \Rightarrow G(f) = G(g)$

- for all $D \in \mathscr{D}$ there is $U \in \mathscr{A}$ with H(U) = D and for all $A \in \mathscr{A}$, Hom $_{\mathscr{A}}(U, A) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(D, HA)$ is surjective.
- Define K(D) = G(U), well-defined and functorial by above properties.
- Get Kan-extension.

Definition Kan extension

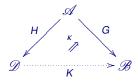
What we used



- $H(f) = H(g) \Rightarrow G(f) = G(g)$
- for all $D \in \mathscr{D}$ there is $U \in \mathscr{A}$ with H(U) = D and for all $A \in \mathscr{A}$, Hom $_{\mathscr{A}}(U, A) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(D, HA)$ is surjective.
- Define K(D) = G(U), well-defined and functorial by above properties.
- Get Kan-extension.

Definition Kan extension

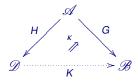
What we used



- $H(f) = H(g) \Rightarrow G(f) = G(g)$
- for all $D \in \mathscr{D}$ there is $U \in \mathscr{A}$ with H(U) = D and for all $A \in \mathscr{A}$, Hom $_{\mathscr{A}}(U, A) \longrightarrow \text{Hom}_{\mathscr{D}}(D, HA)$ is surjective.
- Define K(D) = G(U), well-defined and functorial by above properties.
- Get Kan-extension.

Definition Kan extension

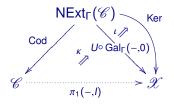
What we used



- $H(f) = H(g) \Rightarrow G(f) = G(g)$
- for all $D \in \mathscr{D}$ there is $U \in \mathscr{A}$ with H(U) = D and for all $A \in \mathscr{A}$, Hom $_{\mathscr{A}}(U, A) \longrightarrow \text{Hom}_{\mathscr{D}}(D, HA)$ is surjective.
- Define K(D) = G(U), well-defined and functorial by above properties.
- Get Kan-extension.

Definition Kan extension

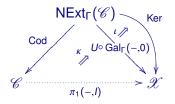
Second Kan extension



- For $p: E \longrightarrow B$ normal, $U \circ \operatorname{Gal}_{\Gamma}(p, 0) = \operatorname{Ker} p \cap \operatorname{Ker} \eta_E$.
- So ι_p : Ker $p \cap$ Ker $\eta_E \longrightarrow$ Ker p is a mono.
- Any natural transformation *F*_◦ Cod ⇒ Ker factors over *U*_◦ Gal_Γ(−, 0).
- So the outer diagram is also a Kan extension.

Definition Kan extension

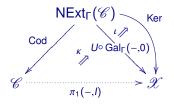
Second Kan extension



- For $p: E \longrightarrow B$ normal, $U \circ \operatorname{Gal}_{\Gamma}(p, 0) = \operatorname{Ker} p \cap \operatorname{Ker} \eta_E$.
- So ι_p : Ker $p \cap$ Ker $\eta_E \longrightarrow$ Ker p is a mono.
- Any natural transformation *F*_◦ Cod ⇒ Ker factors over *U*_◦ Gal_Γ(−, 0).
- So the outer diagram is also a Kan extension.

Definition Kan extension

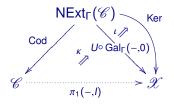
Second Kan extension



- For $p: E \longrightarrow B$ normal, $U \circ \operatorname{Gal}_{\Gamma}(p, 0) = \operatorname{Ker} p \cap \operatorname{Ker} \eta_E$.
- So ι_p : Ker $p \cap$ Ker $\eta_E \longrightarrow$ Ker p is a mono.
- Any natural transformation *F*_◦ Cod ⇒ Ker factors over *U*_◦ Gal_Γ(−, 0).
- So the outer diagram is also a Kan extension.

Definition Kan extension

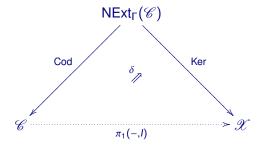
Second Kan extension



- For $p: E \longrightarrow B$ normal, $U \circ \operatorname{Gal}_{\Gamma}(p, 0) = \operatorname{Ker} p \cap \operatorname{Ker} \eta_E$.
- So ι_p : Ker $p \cap$ Ker $\eta_E \longrightarrow$ Ker p is a mono.
- Any natural transformation *F*_◦ Cod ⇒ Ker factors over *U*_◦ Gal_Γ(−, 0).
- So the outer diagram is also a Kan extension.

Definition Kan extension

Second Kan extension



Topological example

• Make it a pointed example by considering basepoints.

- Not every locally connected topological space has weakly universal normal extension.
- Restrict: connected, locally path connected, semi-locally simply connected spaces have *universal* normal extension.
- Proofs still work for restricted settings.

Topological example

- Make it a pointed example by considering basepoints.
- Not every locally connected topological space has weakly universal normal extension.
- Restrict: connected, locally path connected, semi-locally simply connected spaces have *universal* normal extension.
- Proofs still work for restricted settings.

Topological example

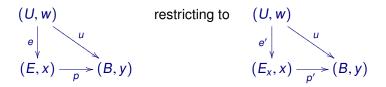
- Make it a pointed example by considering basepoints.
- Not every locally connected topological space has weakly universal normal extension.
- Restrict: connected, locally path connected, semi-locally simply connected spaces have *universal* normal extension.
- Proofs still work for restricted settings.

Topological example

- Make it a pointed example by considering basepoints.
- Not every locally connected topological space has weakly universal normal extension.
- Restrict: connected, locally path connected, semi-locally simply connected spaces have *universal* normal extension.
- Proofs still work for restricted settings.

Connecting homomorphism

Given fibration $(F, x) \longrightarrow (E, x) \longrightarrow (B, y)$, with *F* the fibre over *y*, universal cover (U, w) of *B* gives



where E_x is connected component of x.

Connecting homomorphism

This gives rise to SES

$$0 \longrightarrow \pi_1(E, x) \longrightarrow \pi_1(B, y) \longrightarrow (F \cap E_x, x) \longrightarrow 0$$

and

$$0 \longrightarrow (F \cap E_x, x) \longrightarrow (F, x) \longrightarrow \pi_0(E, x) \longrightarrow 0$$

which paste to usual homotopy sequence of the fibration:

$$0 \longrightarrow \pi_1(E, x) \longrightarrow \pi_1(B, y) \longrightarrow \pi_0(F, x) \longrightarrow \pi_0(E, x) \longrightarrow 0$$

Here the connecting homomorphism is component of δ from the Kan extension!

Julia Goedecke (Cambridge)

Connecting homomorphism

This gives rise to SES

$$0 \longrightarrow \pi_1(E, x) \longrightarrow \pi_1(B, y) \longrightarrow (F \cap E_x, x) \longrightarrow 0$$

and

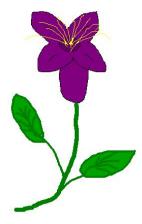
$$0 \longrightarrow (F \cap E_x, x) \longrightarrow (F, x) \longrightarrow \pi_0(E, x) \longrightarrow 0$$

which paste to usual homotopy sequence of the fibration:

$$0 \longrightarrow \pi_1(E, x) \longrightarrow \pi_1(B, y) \longrightarrow \pi_0(F, x) \longrightarrow \pi_0(E, x) \longrightarrow 0$$

Here the connecting homomorphism is component of δ from the Kan extension!

Thanks for listening!



Julia Goedecke (Cambridge)

References

- T. Everaert, J. Goedecke, and T. Van der Linden, *The fundamental group functor as a Kan extension*, submitted, 2013.
- F. Borceux and G. Janelidze, *Galois theories*, Cambridge Stud. Adv. Math., vol. 72, Cambridge Univ. Press, 2001.
- J. Goedecke and T. Van der Linden, *On satellites in semi-abelian categories: Homology without projectives*, Math. Proc. Cambridge Philos. Soc. **147** (2009), no. 3, 629–657.
- G. Janelidze, *Pure Galois theory in categories*, J. Algebra **132** (1990), no. 2, 270–286.
- G. Janelidze, *Galois groups, abstract commutators and Hopf formula*, Appl. Categ. Structures **16** (2008), 653–668.