Category Theory Example Sheet 1

Michaelmas 2011 Julia Goedecke

These questions are of varying difficulty and length. Comments, corrections and clarifications can be emailed to jg352. You can find this sheet on www.dpmms.cam.ac.uk/~jg352/teaching.html.

- 1. (a) Show that identities in a category are unique.
 - (b) Show that a morphism with both a right inverse and a left inverse is an isomorphism.
 - (c) Consider $f: A \longrightarrow B$ and $g: B \longrightarrow C$. Show that if two out of f, g and gf are isomorphisms, then so is the third. [This is known as the *two-out-of-three property*.]
 - (d) Show that functors preserve isomorphisms.
 - (e) Show that if $F: \mathcal{C} \longrightarrow \mathcal{D}$ is full and faithful, and $Ff: FA \longrightarrow FB$ is an isomorphism in \mathcal{D} , then $f: A \longrightarrow B$ is an isomorphism in \mathcal{C} . [In this case we say F reflects isomorphisms.]
- 2. (a) Show that there is a functor ob: $Cat \longrightarrow Set$ sending a small category to its set of objects. Is it faithful? Is it full?
 - (b) Show that there is a functor mor: $Cat \longrightarrow Set$ sending a small category to its set of morphisms. Is it faithful? Is it full?
 - (c) Show that the domain and codomain operations give rise to two natural transformations dom, cod: mor \longrightarrow ob.
- 3. Let \mathcal{G} be a group viewed as a one-object category. Show that the nat. transformations $\alpha: 1_{\mathcal{G}} \longrightarrow 1_{\mathcal{G}}$ correspond to elements in the centre of the group.
- 4. A morphism $e: A \longrightarrow A$ is called *idempotent* if ee = e. An idempotent e is said to *split* if it can be factored as fg where gf is an identity morphism.
 - (a) Let \mathcal{E} be a class of idempotents in a category \mathcal{C} . Show that there is a category $\mathcal{C}[\check{\mathcal{E}}]$ whose objects are the members of \mathcal{E} , whose morphisms $e \longrightarrow d$ are those morphisms $f: \operatorname{dom} e \longrightarrow \operatorname{dom} d$ in \mathcal{C} for which dfe = f, and whose composition coincides with composition in \mathcal{C} . [Warning: the identity morphism on an object e is not $1_{\operatorname{dom} e}$, in general.]
 - (b) If \mathcal{E} is a class of idempotents containing all identity morphisms of \mathcal{C} , show that there is a full and faithful functor $I: \mathcal{C} \longrightarrow \mathcal{C}[\check{\mathcal{E}}]$, and that an arbitrary functor $T: \mathcal{C} \longrightarrow \mathcal{D}$ can be factored as $\widehat{T}I$ for some \widehat{T} iff it sends the members of \mathcal{E} to split idempotents in \mathcal{D} .
 - (c) If all idempotents in \mathcal{C} split, \mathcal{C} is said to be Cauchy-complete; the Cauchy-completion $\widehat{\mathcal{C}}$ of an arbitrary category \mathcal{C} is defined to be $\mathcal{C}[\check{\mathcal{E}}]$, where \mathcal{E} is the class of all idempotents in \mathcal{C} . Verify that the Cauchy-completion of a category is indeed Cauchy-complete.
- 5. (a) Show that any functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ can be factorised as

$$C \xrightarrow{L} \mathcal{E} \xrightarrow{R} \mathcal{D}$$

where L is bijective on objects, and R is full and faithful.

(b) Show that, in a commuting square of functors

$$\begin{array}{c|c}
\mathcal{B} \xrightarrow{F} \mathcal{D} \\
\downarrow L \downarrow & \downarrow R \\
\mathcal{C} \xrightarrow{G} \mathcal{E}
\end{array}$$

with L bijective on objects and R full and faithful, there exists a unique functor $J: \mathcal{C} \longrightarrow \mathcal{D}$ with JL = F and RJ = G.

- (c) Deduce that a functor which is both bijective on objects and full and faithful is an isomorphism of categories.
- (d) Deduce that the factorisation in (a) is unique up to unique isomorphism, stating clearly what you take this to mean.
- 6. Show that the category Set* of pointed sets is equivalent to the category Part of sets and partial functions.
- 7. Let L be a distributive lattice (i.e. a partially ordered set with finite joins (suprema, \vee) and meets (infima, \wedge), satisfying the distributive law

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

for all $a,b,c\in L$). Show that there is a category Mat_L whose objects are the natural numbers, and whose morphisms $n\longrightarrow m$ are $m\times n$ matrices with entries from L, where we define 'multiplication' of such matrices by analogy with that of matrices over a field, interpreting \wedge as multiplication and \vee as addition. Show also that if L is the two-element lattice $\{0,1\}$ with $0\leq 1$, then Mat_L is equivalent to the category Rel_f of finite sets and relations between them.

- 8. Prove that $\theta \colon \mathsf{Nat}(\mathcal{C}(A, -), F) \longrightarrow FA$ from the Yoneda Lemma is natural in F for fixed A.
- 9. Let \mathcal{C} be a small category, and $F, G: \mathcal{C} \longrightarrow \mathsf{Set}$ two functors. Use the Yoneda Lemma to show that a natural transformation $\alpha \colon F \longrightarrow G$ is a monomorphism in $[\mathcal{C}, \mathsf{Set}]$ if and only if all components α_A are monomorphisms in Set .
- 10. By an automorphism of a category C, we of course mean a functor $F: C \longrightarrow C$ with a (2-sided) inverse. We say an automorphism F is *inner* if it is naturally isomorphic to the identity functor. [To see the justification for this name, think about the case when C is a group.]
 - (a) Show that the inner automorphisms of \mathcal{C} form a normal subgroup of the group of all automorphisms of \mathcal{C} . [Don't worry about whether these groups are sets or proper classes.]
 - (b) If F is an automorphism of a category C with a terminal object 1, show that F(1) is also a terminal object of C (and hence isomorphic to 1).
 - (c) Deduce that, for any automorphism F of Set, there is a *unique* natural isomorphism from the identity to F. [Hint: Yoneda]
- 11. Find representations for the following functors. (All functors are defined on morphisms in the only sensible way.)
 - (a) For fixed sets A and B, the functor

$$\mathsf{Set}^\mathrm{op} \longrightarrow \mathsf{Set}$$

$$X \longmapsto \{ \text{pairs of functions } f \colon X \longrightarrow A \text{ and } g \colon X \longrightarrow B \}.$$

(b) For fixed morphisms $f, g: A \longrightarrow B$ in the category Gp , the functor

$$\mathsf{Gp}^\mathrm{op} \longrightarrow \mathsf{Set}$$

$$G \longmapsto \{ \mathsf{morphisms}\ h \colon G \longrightarrow A \ \mathsf{with}\ fh = gh \}.$$

(c) For a commutative ring R and an ideal I in R, the functor

$$\mathsf{CRng} \longrightarrow \mathsf{Set}$$

$$S \longmapsto \{\mathsf{homomorphisms}\ f \colon R \longrightarrow S \text{ with } f(I) = 0\}.$$