
Category Theory Example Sheet 1

Michaelmas 2012 Julia Goedecke

These questions are of varying difficulty and length. Comments, corrections and clarifications can be
emailed to jg352. You can find this sheet on www.dpmms.cam.ac.uk/~jg352/teaching.html.

1. (a) Show that identities in a category are unique.

(b) Show that a morphism with both a right inverse and a left inverse is an isomorphism.

(c) Consider f : A −→ B and g : B −→ C. Show that if two out of f , g and gf are isomorphisms,
then so is the third. [This is known as the two-out-of-three property.]

(d) Show that functors preserve isomorphisms.

(e) Show that if F : C −→ D is full and faithful, and Ff : FA −→ FB is an isomorphism in D,
then f : A −→ B is an isomorphism in C. [In this case we say F reflects isomorphisms.]

2. Let G be a group viewed as a one-object category. Show that the nat. transformations α : 1G −→ 1G
correspond to elements in the centre of the group.

3. A morphism e : A −→ A is called idempotent if ee = e. An idempotent e is said to split if it can
be factored as fg where gf is an identity morphism.

(a) Let E be a class of idempotents in a category C. Show that there is a category C[Ě ] whose objects
are the members of E , whose morphisms e −→ d are those morphisms f : dom e −→ dom d in
C for which dfe = f , and whose composition coincides with composition in C. [Warning : the
identity morphism on an object e is not 1dom e, in general.]

(b) If E is a class of idempotents containing all identity morphisms of C, show that there is a full
and faithful functor I : C −→ C[Ě ], and that an arbitrary functor T : C −→ D can be factored
as T̂ I for some T̂ iff it sends the members of E to split idempotents in D.

(c) If all idempotents in C split, C is said to be Cauchy-complete; the Cauchy-completion Ĉ of an
arbitrary category C is defined to be C[Ě ], where E is the class of all idempotents in C. Verify
that the Cauchy-completion of a category is indeed Cauchy-complete.

4. (a) Show that any functor F : C −→ D can be factorised as

C L ,2 E R ,2 D

where L is bijective on objects, and R is full and faithful.

(b) Show that, in a commuting square of functors

B F ,2

L
��

D
R

��
C

G
,2 E

with L bijective on objects and R full and faithful, there exists a unique functor J : C −→ D
with JL = F and RJ = G.

(c) Deduce that a functor which is both bijective on objects and full and faithful is an isomorphism
of categories.

(d) Deduce that the factorisation in (a) is unique up to unique isomorphism, stating clearly what
you take this to mean.



5. Let L be a distributive lattice (i.e. a partially ordered set with finite joins (suprema, ∨) and meets
(infima, ∧), satisfying the distributive law

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for all a, b, c ∈ L). Show that there is a category MatL whose objects are the natural numbers, and
whose morphisms n −→ m are m×n matrices with entries from L, where we define ‘multiplication’
of such matrices by analogy with that of matrices over a field, interpreting ∧ as multiplication
and ∨ as addition. Show also that if L is the two-element lattice {0, 1} with 0 ≤ 1, then MatL is
equivalent to the category Relf of finite sets and relations between them.

6. Prove that θ : Nat(C(A,−), F ) −→ FA from the Yoneda Lemma is natural in F for fixed A.

7. Let C be a small category, and F,G : C −→ Set two functors. Use the Yoneda Lemma to show that
a natural transformation α : F −→ G is a monomorphism in [C,Set] if and only if all components
αA are monomorphisms in Set.

8. By an automorphism of a category C, we of course mean a functor F : C −→ C with a (2-sided)
inverse. We say an automorphism F is inner if it is naturally isomorphic to the identity functor.
[To see the justification for this name, think about the case when C is a group.]

(a) Show that the inner automorphisms of C form a normal subgroup of the group of all automor-
phisms of C. [Don’t worry about whether these groups are sets or proper classes.]

(b) If F is an automorphism of a category C with a terminal object 1, show that F (1) is also a
terminal object of C (and hence isomorphic to 1).

(c) Deduce that, for any automorphism F of Set, there is a unique natural isomorphism from the
identity to F . [Hint : Yoneda]

9. Prove that limits are unique up to unique isomorphism.

10. Consider a commutative diagram of the following form:

· ,2
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· ,2

��

·

��
· ,2 · ,2 ·

(a) Show that if both small squares are pullbacks, then so is the large rectangle.

(b) Show that if the large rectangle and the right hand square are pullbacks, then so is the left
hand square.

(c) Consider a cube in which the back, top and bottom square are pullbacks. Deduce from the
above that the front square is also a pullback. [This could be interpreted to mean that “the
pullback of a pullback square is a pullback”.]

11. A monomorphism f : A −→ B in a category is said to be strong if, for every commutative square

C
h ,2

g

��

A

f

��
D

k
,2 B

with g epic, there exists a (necessarily unique) t : D −→ A such that ft = k and tg = h. Show that
every regular monomorphism is strong, but that in the finite category represented by the diagram
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the morphism f is strong monic but not regular monic.
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Additional questions for further practice

These questions will not be discussed in the examples class, they are meant just to provide more
opportunity for you to practice and get familiar with the new material.

12. (a) Show that there is a functor ob: Cat −→ Set sending a small category to its set of objects. Is
it faithful? Is it full?

(b) Show that there is a functor mor: Cat −→ Set sending a small category to its set of morphisms.
Is it faithful? Is it full?

(c) Show that the domain and codomain operations give rise to two natural transformations
dom, cod: mor −→ ob.

13. Show that the category Set∗ of pointed sets is equivalent to the category Part of sets and partial
functions.

14. Find representations for the following functors. (All functors are defined on morphisms in the only
sensible way.)

(a) For fixed sets A and B, the functor

Setop −→ Set

X 7−→ {pairs of functions f : X −→ A and g : X −→ B}.

(b) For fixed morphisms f, g : A −→ B in the category Gp, the functor

Gpop −→ Set

G 7−→ {morphisms h : G −→ A with fh = gh}.

(c) For a commutative ring R and an ideal I in R, the functor

CRng −→ Set

S 7−→ {homomorphisms f : R −→ S with f(I) = 0}.
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