Category Theory Example Sheet 3

Michaelmas 2011

Julia Goedecke

These questions are of varying difficulty and length. Comments, corrections and clarifications can be emailed to jg352. You can find this sheet on www.dpmms.cam.ac.uk/~jg352/teaching.html.

1. Let \mathcal{C} be a category with initial and terminal objects which are not isomorphic (e.g. $\mathcal{C} = \mathsf{Set}$), and let **n** denote an *n*-element totally ordered set (so that functors $\mathbf{n} \longrightarrow \mathcal{C}$ "are" composable strings of n-1 morphisms of \mathcal{C}). Show that there are functors $F_0, F_1, \ldots, F_{n+1} \colon [\mathbf{n}, \mathcal{C}] \longrightarrow [\mathbf{n} + \mathbf{1}, \mathcal{C}]$ and $G_0, G_1, \ldots, G_n \colon [\mathbf{n} + \mathbf{1}, \mathcal{C}] \longrightarrow [\mathbf{n}, \mathcal{C}]$ which form an adjoint string of length 2n + 3: that is,

$$(F_0 \dashv G_0 \dashv F_1 \dashv G_1 \dashv \cdots \dashv G_n \dashv F_{n+1}) .$$

Show also that this string is maximal, i.e. that F_0 has no left adjoint and F_{n+1} has no right adjoint. [Hint: recall that a functor with a left adjoint preserves any limits that exist.] Can you find a maximal string of adjoint functors of arbitrary even length?

- 2. Let C be a locally small category with coproducts. Prove that a functor $G: C \longrightarrow Set$ has a left adjoint if and only if it is representable.
- 3. Prove that the "discrete diagram" functor $\Delta : \mathcal{C} \longrightarrow [\mathcal{J}, \mathcal{C}]$ has a right (resp. left) adjoint if and only if \mathcal{C} has limits (resp. colimits) of shape \mathcal{J} .
- 4. Let $F: \mathcal{C} \longrightarrow \mathcal{D}$ and $G: \mathcal{D} \longrightarrow \mathcal{C}$ be functors, and suppose we are given natural transformations $\alpha: 1_{\mathcal{C}} \longrightarrow GF, \ \beta: FG \longrightarrow 1_{\mathcal{D}}$ such that the composite $G\beta \circ \alpha_G: G \longrightarrow GFG \longrightarrow G$ is the identity. Show that the composite $\beta_F \circ F\alpha: F \longrightarrow F$ is idempotent, and deduce that if \mathcal{D} is Cauchy-complete (cf. Sheet 1, Question 4) then G has a left adjoint. By taking \mathcal{C} to be the discrete category with one object and choosing \mathcal{D} suitably, show that the conclusion may fail if \mathcal{D} is not Cauchy-complete.
- 5. Let $\mathcal{C}_{\leq G} \xrightarrow{F} \mathcal{D}$ be an adjunction $F \dashv G$ with unit η and counit ε . Show that the following conditions are equivalent.
 - (i) $F\eta_A$ is an isomorphism for all objects A of C.
 - (ii) $\varepsilon_F A$ is an isomorphism for all A.
 - (iii) $G\varepsilon_F A$ is an isomorphism for all A.
 - (iv) $GF\eta_A = \eta_{GFA}$ for all A.
 - (v) $GF\eta_{GB} = \eta_{GFGB}$ for all objects B of \mathcal{D} .
 - (vi)-(x) The duals of (i)-(v).

[Hint: if you take the conditions in the cyclic order indicated, all implications are trivial except for $(v) \Rightarrow (vi)$ and its dual $(x) \Rightarrow (i)$.] An adjunction with these properties is said to be *idempotent*.

- 6. A complete semilattice is a partially ordered set A in which every subset has a least upper bound (i.e. A is cocomplete when regarded as a category); a complete semilattice homomorphism is a mapping preserving (order and) arbitrary least upper bounds. Use the Adjoint Functor Theorem to show that
 - (a) a poset A is a complete semilattice iff A^{op} is;
 - (b) the category CSLat of complete semilattices and their homomorphisms is isomorphic to its opposite.
- 7. Let $\mathcal{C} \xleftarrow{F}_{G} \mathcal{D}$ be an adjunction $(F \dashv G)$ with F faithful, and let $K \in \text{ob } \mathcal{D}$ be a coseparator of \mathcal{D} . Show that GK is a coseparator of \mathcal{C} .

- 8. Recall from Sheet 2 the theories of widgets and chads.
 - (a) Use the General Adjoint Functor Theorem to show that $U: Widget \longrightarrow Set$ has a left adjoint.
 - (b) Do the same for the forgetful functor Widget \longrightarrow Chad.
- 9. (a) Let C be an arbitrary category. Show that the monoid of natural transformations from the identity functor $1_{\mathcal{C}}$ to itself is commutative. [This monoid is sometimes called the *centre* of the category C; if you think about what it is when C is a group, you will see why.]
 - (b) Deduce that if $1_{\mathcal{C}}$ has a monad structure $(1_{\mathcal{C}}, \eta, \mu)$, then η is an isomorphism.
 - (c) Let $F: \mathcal{C} \longrightarrow \mathcal{D}$ be a functor having a right adjoint G, such that there is some natural isomorphism (not necessarily the unit of the adjunction) between $1_{\mathcal{C}}$ and GF. Show that the unit is also an isomorphism, and deduce that F is full and faithful.
 - (d) Let Idem be the category of sets equipped with an idempotent endomorphism (cf. Example (e) in Section 3A in your notes). Show that the forgetful functor $U: \mathsf{Idem} \longrightarrow \mathsf{Set}$ has a left adjoint F, and that there are functors G and H with GF and UH both isomorphic to the identity on Set , but that the unit of $(F \dashv U)$ is not an isomorphism.
- 10. Let $\mathbb{T} = (T, \eta, \mu)$ be a monad on \mathcal{C} , and suppose T has a right adjoint R. Show that R has the structure of a comonad \mathbb{R} , such that the category of \mathbb{R} -coalgebras is isomorphic to the category of \mathbb{T} -algebras. Deduce that a functor with adjoints on both sides is monadic iff it is comonadic. [Hint: you can do this "directly" by showing millions of diagrams commute, but there is also a shorter conceptual way.]
- 11. We say a monad $\mathbb{T} = (T, \eta, \mu)$ is *idempotent* if μ is an isomorphism (cf. Question 5).
 - (a) Suppose that \mathcal{D} is a reflective subcategory of \mathcal{C} (i.e. the inclusion has a left adjoint). Show that the monad $\mathbb{T}_{\mathcal{D}}$ on \mathcal{C} induced be this adjunction is idempotent.
 - (b) Show that if \mathbb{T} is idempotent, then the full subcategory $\operatorname{Fix}(\mathbb{T}) \subseteq \mathcal{C}$, whose objects are those $A \in \mathcal{C}$ such that $\eta_A \colon A \longrightarrow TA$ is an isomorphism, is reflective in \mathcal{C} .
 - (c) A subcategory $\mathcal{D} \subset \mathcal{C}$ is said to be *replete* if any object which is isomorphic to one in \mathcal{D} is again in \mathcal{D} . Show that the assignations

$$\mathbb{T}\longmapsto \operatorname{Fix}(\mathbb{T}) \qquad \text{and} \qquad (\mathcal{D}\subseteq \mathcal{C})\longmapsto \mathbb{T}_{\mathcal{D}}$$

induce a bijection between idempotent monads on \mathcal{C} and reflective, replete subcategories of \mathcal{C} .

- (d) If \mathbb{T} is an idempotent monad on \mathcal{C} , show that a \mathbb{T} -algebra structure on an object A is necessarily a two-sided inverse for η_A , and deduce that $\mathcal{C}^{\mathbb{T}}$ is isomorphic to $\operatorname{Fix}(\mathbb{T}) \subseteq \mathcal{C}$.
- (e) Show also that the Kleisli category $\mathcal{C}_{\mathbb{T}}$ is equivalent to $\operatorname{Fix}(\mathbb{T})$.
- 12. Let $\mathbb{T} = (T, \eta, \mu)$ be a monad on \mathcal{C} , and let \mathcal{D} be an arbitrary category. Show that each of the functors $(F \mapsto T \circ F) \colon [\mathcal{D}, \mathcal{C}] \longrightarrow [\mathcal{D}, \mathcal{C}]$ and $(G \mapsto G \circ T) \colon [\mathcal{C}, \mathcal{D}] \longrightarrow [\mathcal{C}, \mathcal{D}]$ carries a monad structure, and that the categories of algebras for these two monads are respectively equivalent to $[\mathcal{D}, \mathcal{C}^{\mathbb{T}}]$ and to $[\mathcal{C}_{\mathbb{T}}, \mathcal{D}]$. [Hint for the second one: show that algebra structures on a functor G correspond to factorizations of G through $F_{\mathbb{T}} \colon \mathcal{C} \longrightarrow \mathcal{C}_{\mathbb{T}}$.]
- 13. Recall from Sheet 2 the theories of widgets and chads. Use the Monadicity Theorem to show that Widget is monadic over Set.
- 14. Let \mathcal{C} be a well-powered category and $\mathbb{T} = (T, \eta, \mu)$ a monad on \mathcal{C} . Prove that the category $\mathcal{C}^{\mathbb{T}}$ of \mathbb{T} -algebras is well-powered.
- 15. Prove that the Kleisli category $C_{\mathbb{T}}$ is equivalent to the full subcategory of $C^{\mathbb{T}}$ given by the free \mathbb{T} -algebras: those objects (A, α) which are isomorphic to (TB, μ_B) for some $B \in \text{ob } C$.