
Category Theory Example Sheet 3

Michaelmas 2011 Julia Goedecke

These questions are of varying difficulty and length. Comments, corrections and clarifications can be
emailed to jg352. You can find this sheet on www.dpmms.cam.ac.uk/∼jg352/teaching.html.

1. Let C be a category with initial and terminal objects which are not isomorphic (e.g. C = Set), and
let n denote an n-element totally ordered set (so that functors n −→ C “are” composable strings
of n− 1 morphisms of C). Show that there are functors F0, F1, . . . , Fn+1 : [n, C] −→ [n + 1, C] and
G0, G1, . . . , Gn : [n + 1, C] −→ [n, C] which form an adjoint string of length 2n + 3: that is,

(F0 a G0 a F1 a G1 a · · · a Gn a Fn+1) .

Show also that this string is maximal, i.e. that F0 has no left adjoint and Fn+1 has no right adjoint.
[Hint: recall that a functor with a left adjoint preserves any limits that exist.] Can you find a
maximal string of adjoint functors of arbitrary even length?

2. Let C be a locally small category with coproducts. Prove that a functor G : C −→ Set has a left
adjoint if and only if it is representable.

3. Prove that the “discrete diagram” functor ∆: C −→ [J , C] has a right (resp. left) adjoint if and
only if C has limits (resp. colimits) of shape J .

4. Let F : C −→ D and G : D −→ C be functors, and suppose we are given natural transformations
α : 1C −→ GF , β : FG −→ 1D such that the composite Gβ◦αG : G −→ GFG −→ G is the identity.
Show that the composite βF ◦Fα : F −→ F is idempotent, and deduce that if D is Cauchy-complete
(cf. Sheet 1, Question 4) then G has a left adjoint. By taking C to be the discrete category with
one object and choosing D suitably, show that the conclusion may fail if D is not Cauchy-complete.

5. Let C
F //D
G

oo be an adjunction F a G with unit η and counit ε. Show that the following conditions

are equivalent.

(i) FηA is an isomorphism for all objects A of C.
(ii) εF A is an isomorphism for all A.

(iii) GεF A is an isomorphism for all A.

(iv) GFηA = ηGFA for all A.

(v) GFηGB = ηGFGB for all objects B of D.

(vi)–(x) The duals of (i)–(v).

[Hint: if you take the conditions in the cyclic order indicated, all implications are trivial except for
(v)⇒(vi) and its dual (x)⇒(i).] An adjunction with these properties is said to be idempotent.

6. A complete semilattice is a partially ordered set A in which every subset has a least upper bound
(i.e. A is cocomplete when regarded as a category); a complete semilattice homomorphism is a
mapping preserving (order and) arbitrary least upper bounds. Use the Adjoint Functor Theorem
to show that

(a) a poset A is a complete semilattice iff Aop is;

(b) the category CSLat of complete semilattices and their homomorphisms is isomorphic to its
opposite.

7. Let C
F // D
G

oo be an adjunction (F a G) with F faithful, and let K ∈ obD be a coseparator of D.

Show that GK is a coseparator of C.



8. Recall from Sheet 2 the theories of widgets and chads.

(a) Use the General Adjoint Functor Theorem to show that U : Widget −→ Set has a left adjoint.

(b) Do the same for the forgetful functor Widget −→ Chad.

9. (a) Let C be an arbitrary category. Show that the monoid of natural transformations from the
identity functor 1C to itself is commutative. [This monoid is sometimes called the centre of the
category C; if you think about what it is when C is a group, you will see why.]

(b) Deduce that if 1C has a monad structure (1C , η, µ), then η is an isomorphism.

(c) Let F : C −→ D be a functor having a right adjoint G, such that there is some natural isomor-
phism (not necessarily the unit of the adjunction) between 1C and GF . Show that the unit is
also an isomorphism, and deduce that F is full and faithful.

(d) Let Idem be the category of sets equipped with an idempotent endomorphism (cf. Example (e)
in Section 3A in your notes). Show that the forgetful functor U : Idem −→ Set has a left adjoint
F , and that there are functors G and H with GF and UH both isomorphic to the identity on
Set, but that the unit of (F a U) is not an isomorphism.

10. Let T = (T, η, µ) be a monad on C, and suppose T has a right adjoint R. Show that R has the
structure of a comonad R, such that the category of R-coalgebras is isomorphic to the category of
T-algebras. Deduce that a functor with adjoints on both sides is monadic iff it is comonadic. [Hint:
you can do this “directly” by showing millions of diagrams commute, but there is also a shorter
conceptual way.]

11. We say a monad T = (T, η, µ) is idempotent if µ is an isomorphism (cf. Question 5).

(a) Suppose that D is a reflective subcategory of C (i.e. the inclusion has a left adjoint). Show that
the monad TD on C induced be this adjunction is idempotent.

(b) Show that if T is idempotent, then the full subcategory Fix(T) ⊆ C, whose objects are those
A ∈ C such that ηA : A −→ TA is an isomorphism, is reflective in C.

(c) A subcategory D ⊂ C is said to be replete if any object which is isomorphic to one in D is
again in D. Show that the assignations

T 7−→ Fix(T) and (D ⊆ C) 7−→ TD

induce a bijection between idempotent monads on C and reflective, replete subcategories of C.
(d) If T is an idempotent monad on C, show that a T-algebra structure on an object A is necessarily

a two-sided inverse for ηA, and deduce that CT is isomorphic to Fix(T) ⊆ C.
(e) Show also that the Kleisli category CT is equivalent to Fix(T).

12. Let T = (T, η, µ) be a monad on C, and let D be an arbitrary category. Show that each of the
functors (F 7−→ T ◦ F ) : [D, C] −→ [D, C] and (G 7−→ G ◦ T ) : [C,D] −→ [C,D] carries a monad
structure, and that the categories of algebras for these two monads are respectively equivalent to
[D, CT] and to [CT,D]. [Hint for the second one: show that algebra structures on a functor G
correspond to factorizations of G through FT : C −→ CT.]

13. Recall from Sheet 2 the theories of widgets and chads. Use the Monadicity Theorem to show that
Widget is monadic over Set.

14. Let C be a well-powered category and T = (T, η, µ) a monad on C. Prove that the category CT of
T-algebras is well-powered.

15. Prove that the Kleisli category CT is equivalent to the full subcategory of CT given by the free
T-algebras: those objects (A,α) which are isomorphic to (TB, µB) for some B ∈ ob C.
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