Category Theory Example Sheet 4

Michaelmas 2011

Julia Goedecke

These questions are of varying difficulty and length. Comments, corrections and clarifications can be emailed to jg352. You can find this sheet on www.dpmms.cam.ac.uk/~jg352/teaching.html.

- 1. In a pointed category, show that $\ker(0: A \longrightarrow B) = 1_A$.
- 2. (a) Let \mathcal{C} be a small category and \mathcal{A} abelian. Show that the functor category $[\mathcal{C}, \mathcal{A}]$ is abelian.
 - (b) Let \mathcal{B} be preadditive and \mathcal{A} abelian. Prove that the full subcategory $\operatorname{Add}(\mathcal{B}, \mathcal{A}) \subset [\mathcal{B}, \mathcal{A}]$ of additive functors $\mathcal{B} \longrightarrow \mathcal{A}$ is abelian.
 - (c) Show that for a (unitary) ring R, the category R-Mod of (left) R-modules is isomorphic to Add(R, AbGp).

3. Additive Yoneda Lemma

- (a) If \mathcal{A} is a preadditive category and A is an object in \mathcal{A} , prove that the "representable functor" $\mathcal{A}(A, -): \mathcal{A} \longrightarrow \mathsf{AbGp}$ is additive.
- (b) Given an object A in a preadditive \mathcal{A} and $F: \mathcal{A} \longrightarrow \mathsf{AbGp}$, prove that there exists an isomorphism of abelian groups

$$\theta_{A,F}$$
: Nat $(\mathcal{A}(A, -), F) \cong F(A)$

which is natural in A and F.

- 4. A category \mathcal{A} is called *semi-additive* if it is enriched in the category of monoids. In this question you will prove that in certain cases a semi-additive structure exists (and then it is unique, see proof for additive structures in lectures).
 - (a) Let X be a set equipped with a distinguished element 0, and two binary operations + and * both of which have 0 as a (two-sided) identity element, and which satisfy the 'middle interchange law'

$$(x+y)*(z+w) = (x*z) + (y*w)$$

Show that + and * coincide and that they are (it is?) associative and commutative (i.e., X is a commutative monoid). [This is a well-known piece of pure algebra, which I've included here in case you haven't seen it before.]

(b) Now let \mathcal{A} be a locally small pointed category with finite products and coproducts, where the product of any two objects coincides with their coproduct (more precisely, the functors $\mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ sending (A, B) to $A \times B$ and to A + B are naturally isomorphic). By considering the distinguished element 0: $A \longrightarrow 0 \longrightarrow B$ of $\mathcal{A}(A, B)$ and the two binary operations on this set sending (f, g) to the composites

$$A \xrightarrow{(1,1)} A \times A \cong A + A \xrightarrow{(f,g)} B$$
 and $A \xrightarrow{(f,g)} B \times B \cong B + B \xrightarrow{(1,1)} B$

respectively, show that \mathcal{A} is semi-additive.

- 5. A pseudo-mono is a morphism $f: A \longrightarrow B$ such that fg = 0 implies g = 0.
 - (a) Show that if \mathcal{A} is preadditive, then any pseudo-mono in \mathcal{A} is a mono.
 - (b) Let \mathcal{C} be pointed with kernels and cokernels, such that every mono in \mathcal{C} is normal. Show that every morphism in \mathcal{C} factors as a pseudo-epi followed by a mono. [Given $f: A \longrightarrow B$, let $k = \ker \operatorname{coker}(f)$, and prove that the factorisation g of f over k is a pseudo-epi.]

- 6. The following 'addition-free' definition of an abelian category is often found in textbooks: \mathcal{A} is abelian if it has a zero object, binary products, binary coproducts, kernels and cokernels, every monomorphism in \mathcal{A} is a kernel and every epimorphism is a cokernel. Show that this definition is equivalent to the one given in lectures, along the following lines:
 - (a) Show that \mathcal{A} has pullbacks of pairs $(f: A \longrightarrow C, g: B \longrightarrow C)$ one of which is monic [hint: consider the kernel of qf, where q is the cokernel of g], and deduce that \mathcal{A} has equalizers (and hence all finite limits).
 - (b) Dually, \mathcal{A} has all finite colimits. Now show that any pseudo-mono in \mathcal{A} is monic. [If f is pseudo-monic and fx = fy, let q be a coequalizer of x and y: note that q is epic, and hence a cokernel of some morphism z, but f factors through q and hence z factors through $0 \longrightarrow A$.]
 - (c) Given two objects A and B, consider the morphism $f: A + B \longrightarrow A \times B$ with matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Show that f is both monic and epic, and hence an isomorphism. [Hint: first show that $\iota_2: B \longrightarrow A + B$ is the kernel of $(1,0): A + B \longrightarrow A$.] Deduce that \mathcal{A} has a semi-additive structure.
 - (d) Finally, obtain the additive inverse of a morphism $f: A \longrightarrow B$ by considering the (multiplicative!) inverse of the morphism $A \oplus B \longrightarrow A \oplus B$ with matrix $\begin{pmatrix} 1 & 0 \\ f & 1 \end{pmatrix}$.
- 7. (a) Show that in the category $AbGp_{t.f.}$ of torsion-free abelian groups, not every monomorphism is a kernel and not every epimorphism is a cokernel. [Warning: epimorphisms in this category do not have to be surjective.]
 - (b) Let C be the category of finitely-generated abelian groups having no elements of order 4 (though they may have elements of order 2), and homomorphisms between them. Show that every epimorphism in C is (surjective, and hence) a cokernel, but not every monomorphism in C is a kernel.
 - (c) Let \mathcal{A} be a preadditive category with kernels and cokernels, in which every epimorphism is a cokernel but not every monomorphism is a kernel. Show that normal monomorphisms (equivalently, regular monomorphisms) in \mathcal{A} must fail to be closed under composition. [Given a non-normal monomorphism f, factor it as kg where k is the kernel of the cokernel of f; then let l be the kernel of the cokernel of g, and show that kl is not a normal monomorphism.]
- 8. Let \mathcal{A} be abelian. Consider

$$\begin{array}{ccc} A \xrightarrow{f} & B \\ g \\ \downarrow & \downarrow h \\ C \xrightarrow{k} & D \end{array} \quad \text{and} \quad A \xrightarrow{\begin{pmatrix} f \\ -g \end{pmatrix}} B \oplus C \xrightarrow{(h,k)} D \end{array}$$

Prove

(a) $(h,k) \begin{pmatrix} f \\ -g \end{pmatrix} = 0$ iff the square commutes.

- (b) $\begin{pmatrix} f \\ -g \end{pmatrix} = \ker(h, k)$ iff the square is a pullback.
- (c) $(h,k) = \operatorname{coker} \begin{pmatrix} f \\ -g \end{pmatrix}$ iff the square is a pushout.
- 9. Use the Nine Lemma to prove the Noether's Third Isomorphism Theorem: In an abelian category \mathcal{A} , consider subobjects $A \rightarrow B \rightarrow C$. Then B/A is a subobject of C/A and $(C/A)/(B/A) \cong C/B$.
- 10. Given a complex

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots$$

show that $H_n(C_{\bullet}) = 0$ iff C_{\bullet} is exact at C_n .