
Category Theory Example Sheet 4

Michaelmas 2011 Julia Goedecke

These questions are of varying difficulty and length. Comments, corrections and clarifications can be
emailed to jg352. You can find this sheet on www.dpmms.cam.ac.uk/∼jg352/teaching.html.

1. In a pointed category, show that ker(0 : A −→ B) = 1A.

2. (a) Let C be a small category and A abelian. Show that the functor category [C,A] is abelian.

(b) Let B be preadditive and A abelian. Prove that the full subcategory Add(B,A) ⊂ [B,A] of
additive functors B −→ A is abelian.

(c) Show that for a (unitary) ring R, the category R-Mod of (left) R-modules is isomorphic to
Add(R,AbGp).

3. Additive Yoneda Lemma

(a) If A is a preadditive category and A is an object in A, prove that the “representable functor”
A(A,−) : A −→ AbGp is additive.

(b) Given an object A in a preadditive A and F : A −→ AbGp, prove that there exists an isomor-
phism of abelian groups

θA,F : Nat(A(A,−), F ) ∼= F (A)

which is natural in A and F .

4. A category A is called semi-additive if it is enriched in the category of monoids. In this question
you will prove that in certain cases a semi-additive structure exists (and then it is unique, see proof
for additive structures in lectures).

(a) Let X be a set equipped with a distinguished element 0, and two binary operations + and ∗ both
of which have 0 as a (two-sided) identity element, and which satisfy the ‘middle interchange
law’

(x + y) ∗ (z + w) = (x ∗ z) + (y ∗ w) .

Show that + and ∗ coincide and that they are (it is?) associative and commutative (i.e., X is
a commutative monoid). [This is a well-known piece of pure algebra, which I’ve included here
in case you haven’t seen it before.]

(b) Now let A be a locally small pointed category with finite products and coproducts, where
the product of any two objects coincides with their coproduct (more precisely, the functors
A×A −→ A sending (A,B) to A×B and to A+B are naturally isomorphic). By considering
the distinguished element 0: A −→ 0 −→ B of A(A,B) and the two binary operations on this
set sending (f, g) to the composites

A
(1,1) // A×A ∼= A + A

(f,g) // B and A
(f,g) // B ×B ∼= B + B

(1,1) // B

respectively, show that A is semi-additive.

5. A pseudo-mono is a morphism f : A −→ B such that fg = 0 implies g = 0.

(a) Show that if A is preadditive, then any pseudo-mono in A is a mono.

(b) Let C be pointed with kernels and cokernels, such that every mono in C is normal. Show
that every morphism in C factors as a pseudo-epi followed by a mono. [Given f : A −→ B, let
k = ker coker(f), and prove that the factorisation g of f over k is a pseudo-epi.]



6. The following ‘addition-free’ definition of an abelian category is often found in textbooks: A is
abelian if it has a zero object, binary products, binary coproducts, kernels and cokernels, every
monomorphism in A is a kernel and every epimorphism is a cokernel. Show that this definition is
equivalent to the one given in lectures, along the following lines:

(a) Show that A has pullbacks of pairs (f : A −→ C, g : B −→ C) one of which is monic [hint:
consider the kernel of qf , where q is the cokernel of g], and deduce that A has equalizers (and
hence all finite limits).

(b) Dually, A has all finite colimits. Now show that any pseudo-mono in A is monic. [If f is
pseudo-monic and fx = fy, let q be a coequalizer of x and y: note that q is epic, and hence a
cokernel of some morphism z, but f factors through q and hence z factors through 0 −→ A.]

(c) Given two objects A and B, consider the morphism f : A + B −→ A×B with matrix ( 1 0
0 1 ).

Show that f is both monic and epic, and hence an isomorphism. [Hint: first show that
ι2 : B −→ A + B is the kernel of (1, 0) : A + B −→ A.] Deduce that A has a semi-additive
structure.

(d) Finally, obtain the additive inverse of a morphism f : A −→ B by considering the (multiplica-
tive!) inverse of the morphism A⊕B −→ A⊕B with matrix

(
1 0
f 1

)
.

7. (a) Show that in the category AbGpt.f. of torsion-free abelian groups, not every monomorphism is
a kernel and not every epimorphism is a cokernel. [Warning: epimorphisms in this category do
not have to be surjective.]

(b) Let C be the category of finitely-generated abelian groups having no elements of order 4 (though
they may have elements of order 2), and homomorphisms between them. Show that every
epimorphism in C is (surjective, and hence) a cokernel, but not every monomorphism in C is a
kernel.

(c) LetA be a preadditive category with kernels and cokernels, in which every epimorphism is a
cokernel but not every monomorphism is a kernel. Show that normal monomorphisms (equiv-
alently, regular monomorphisms) in A must fail to be closed under composition. [Given a
non-normal monomorphism f , factor it as kg where k is the kernel of the cokernel of f ; then
let l be the kernel of the cokernel of g, and show that kl is not a normal monomorphism.]

8. Let A be abelian. Consider

A
f //

g

��

B

h
��

C
k

// D

and
A

“
f
−g

”
//B ⊕ C

(h,k) //D

Prove

(a) (h, k)
(

f
−g

)
= 0 iff the square commutes.

(b)
(

f
−g

)
= ker(h, k) iff the square is a pullback.

(c) (h, k) = coker
(

f
−g

)
iff the square is a pushout.

9. Use the Nine Lemma to prove the Noether’s Third Isomorphism Theorem: In an abelian categoryA,
consider subobjects A // //B // //C . Then B/A is a subobject of C/A and (C/A)/(B/A) ∼= C/B.

10. Given a complex

· · · //Cn+1
dn+1 //Cn

dn //Cn−1
// · · ·

show that Hn(C•) = 0 iff C• is exact at Cn.
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