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Preamble

The Notes

These notes are not verbatim what I will write on the blackboards. They will have more detail
here and there, and more complete sentences. You can read ahead of lectures, you can use them
for revision, you can use them to look up a little detail which you can’t figure out from the more
compressed notes from the actual lectures, and probably in many more ways. It is up to you to
find out how they are most useful. If you don’t like taking notes at all in lectures, use these. If you
(like me) find that taking down notes in lectures is actually the best way to learn something, set
these notes aside for a while and use them just to fill in gaps later. If you try to read these notes
while I'm lecturing the same material, you may get confused and probably won’t hear what I say.

There are probably still some errors and typos in the notes, please do let me know (jg352) if
you find any, even if they look trivial. I would like to thank Zhen Lin Low, Tamar von Glehn and
Achilleas Kryfties for helping me proofread the notes.

The Exam

Past papers will be a good guide to questions. The last two years were set by me; however
2012 was a bit too easy. The structure will be a choice of 5 questions out of 8 possibilities. There
will be a mixture of some bookwork and some problem type questions. Examinable material covers
not just the lectured material but also all material from the example sheets, and anything in the
course which is left as an exercise.

Books

Here is a list of books which may be useful:

(1) Mac Lane, S. Categories for the Working Mathematician, Springer 1971 (second edition
1998). Still the best one-volume book on the subject, written by one of its founders.

(2) Awodey, S. Category Theory, Oxford U.P. 2006. A new treatment very much in the spirit
of Mac Lane’s classic, but rather more gently paced.

(3) Borceux, F. Handbook of Categorical Algebra, Cambridge U.P. 1994. Three volumes
which together provide the best modern account of everything an educated mathematician
should know about categories: volume 1 covers most but not all of the Part III course.

(4) McLarty, C. Elementary Categories, Elementary Toposes (chapters 1-12 only), Oxford
U.P. 1992. A very gently-paced introduction to categorical ideas, written by a philosopher
for those with little mathematical background.

To get into the subject, people have told me that the Awodey book is very good. Mac Lane is
very dense but has a lot of material and examples in it (if you can find them), and Borceux suits
my personal style the best, but there are some typos in it.

Example Sheets

There will be four example sheets. The questions vary in difficulty and length. You can find
them on my website https://www.dpmms.cam.ac.uk/~jg352/teaching. Doing example sheet
questions is the best way to understand the material. However, if you think the sheets are too
long, just pick some of the questions. If you think the sheets are too short, find your own additional
questions in books. You are responsible for your own learning, and these example sheets are just
what I offer you to help your learning.


https://www.dpmms.cam.ac.uk/~jg352/teaching

2 PREAMBLE

There will be examples classes, each with roughly 12 students in it. Arrangements will be
advertised in lectures and on my website https://www.dpmms.cam.ac.uk/~jg352/teaching.html

The Course

What is Category Theory?

o It’s one level more abstraction than other pure maths.

One could call it “Mathematics about Mathematics”. It is however still Mathematics!
In pure maths, we for example abstract from symmetries of polyhedra to group theory
and integers to ring theory, and in Category Theory we abstract from groups, rings,
modules, ... to categories.

o It’s a language for mathematicians.

Notation is important! For example % suggests the right properties of differentiation.

Category Theory is a subject-agnostic abstract notation system for pure mathematics.
o It’s a way of thinking.

We study structure, find common patterns, and try to understand how and why things
work. We want to understand things so well that we can make them “look obvious”. In
this sense a lot of work goes into definitions!

Category Theory is not only interested in one particular mathematical object, but in how
objects of a similar kind interact with each other, in global structures and connections. So for ex-
ample we study morphisms of a similar kind such as sets or groups or modules, but with interaction
between them, i.e. with morphisms of an appropriate kind as well.

4

To get a flavour of the “wider world” of Category Theory, you can go to the Category Theory
Seminars, on Tuesdays, 2:15pm, in MR5. You may not understand everything or even anything,
but you will still get an idea about what category theorists do. There is also the Junior Seminar
(run by PhD students), which is on Thursdays 2pm. This should be more accessible to Part III
students, and our PhD students are a very friendly and lively lot who will be happy to answer
questions.


https://www.dpmms.cam.ac.uk/~jg352/teaching.html

CHAPTER 1

Categories, Functors and Natural Transformations

A Categories

Definition: A category % consists of:
o a collection ob % of objects (denoted A, B,C,...)
o for each pair A, B € ob¥, a collection € (A, B) = Homg (A, B) of morphisms
(denoted f: A — B, g, h,...)
equipped with
o for each A € ob %, an identity morphism id4 = 14 € € (4, A).
o for each A, B,C € ob ¥, a composition law:

¢(A,B) x€(B,C) — F(A,C)
(f,9) — gof =g,
satisfying

o identity axioms: if f: A — B, then lgof = f = foly.
o associativity: if f: A— B, g: B— C, h: C' — D then

ho (go1) = (heg) of

Definition: A category € is said to be small if ob% and all of the € (A, B) are sets, and locally
small if each € (A, B) is a set (in which case we also call them “hom sets”).

Remarks: o If f: A— B, we call A the domain (or source) of f and B the codomain

(or target) of f.

o Morphisms are also referred to as maps or arrows.

o Most of the time, we won’t worry too much about the intricacies of set theory.

o We could define categories just considering morphisms (with the objects defined by the
identities), but in most examples the objects “come first”.

o We may write mor % for the collection of all the morphisms in ¢, and dom, cod: mor ¢ — ob ¥
for the domain and codomain operations (see Example Sheet 1).

Definition: We say a square such as

f
—

B
lg
= D

A
hl
C

is commutative (or commutes) when the composites gof and koh give the same morphism
A— D.

This terminology also applies to other shapes of diagrams. To indicate that a diagram com-
mutes, we often write a little square into it, or use O.

Examples: a) Set of sets and functions.
b) Categories of algebraic structures such as:
o Gp: groups and group homomorphisms,

3
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o AbGp: abelian groups and group homomorphisms,
¢ Rng: rings and ring homomorphisms,
¢ R-Mod: R-modules and R-module homomorphisms for a given ring R.
¢) Categories of topological structures such as:
o Top: topological spaces and continuous maps,
o Haus: Hausdorff spaces and continuous maps,
o Met: metric spaces and uniformly continuous maps (or Lipschitz maps, for a different
category),
¢ Htpy: topological spaces and homotopy classes of continuous maps.

Note that the only maps we really need in a category (so as to have a category) are the
identities.

Definition: A category with only identities is called discrete.

Examples: d) Mathematical structures viewed as categories:

o Sets: Any set can be viewed as a discrete category with the elements as objects.

o Posets: A poset (P,<) can be regarded as a category with the elements of P as
objects, and with Hom(a, b) being a singleton if a < b and empty otherwise. Then
reflexivity implies the existence of identity morphisms, and transitivity gives us com-
position.

Any category in which there is at most one morphism between any two objects is a
preorder. Note that a preorder doesn’t need to satisfy antisymmetry.

o Monoids': A locally small category with just one object is a monoid. The morphisms
are the elements of the monoid, composition of morphisms is multiplication in the
monoid and the identity morphism is the unit of multiplication.

o Groups: A group can be considered as a category with one object, just as for monoids.
The difference is that every morphism now has a (two-sided) inverse.

Definition: A morphism f: A — B in a category % is called an isomorphism if it has a two-sided
inverse, i.e. a g: B —> A satisfying gf = 14 and fg = 1. A category in which every morphism
is an isomorphism is called a groupoid.

This means that a group is a groupoid with only one object. Note that in a poset, only the
identities are isomorphisms.

Examples: o Iso%: Any category gives rise to a groupoid: just take all objects and all
isomorphisms.
¢ Fundamental groupoid: Given a space X, the fundamental groupoid 7(X) has objects
the points of X, and morphisms * — y are homotopy classes of continuous paths
u: [0,1] — X from z to y. Composition of u: x — y with v: y — z is defined as

_Ju(2t) (0<
vu(t) - {U(2t— 1) (% <

The identity morphism is a constant path at x; inverses are paths traversed backwards.

1 Examples: (“New from old”)

a) Given any category ¢, the opposite category ¢ °P has the same objects and morphisms
as €, but the direction of the morphisms is reversed: ¢°P(A, B) = € (B, A). This gives us
a “duality principle”: if some statement P holds in any category, so does the statement
P* obtained by “reversing all arrows in P”.

LA monoid is like a group, but without inverses.
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b) Subcategories: Z is a subcategory of € if ob2 < ob%¥ and for each A,B € ob 2,
9(A,B) € ¥(A,B). E.g. AbGp — Gp.

¢) Product categories: Given categories ¥ and 2, the product € x & has objects (A, B)
with A € ob% and B € ob &, and morphisms (f,g): (A, B) — (C,D) with f: A — C
in¥ and g: B—> D in 2.

d) Slice categories: Given a category ¢ and an object B of €, the slice category €'/B has
as objects those morphisms in € with codomain B, and “morphisms are commutative

triangles”:
A C A—2" 0
h: \Lf — lg satisfies \ | /
f g
B B B

Dually we have the coslice category B\% = (¢°P/B)°* with

B
SN
_—
A h C.
For example:

¢ Set/B can be regarded as the category of “B-indexed families of sets”: An object
A
|/ | may be identified with the family (f=*(b) | b€ B).
B

o 1\Set (with 1 = {#} a one-point set) is the category of pointed sets: objects are
pairs (A, a) of sets with a distinguished element a € A, and morphisms f: (A,a) — (B, b)
must preserve this: f(a) = b.
e) Arrow categories: Given a category %, the arrow category Arr @ has as objects the
morphisms of ¢, and as morphisms commutative squares

A—1sp

C?D.

f) Quotient categories: Given an equivalence relation ~ on each collection of morphisms
% (A, B) of a category € satisfying

f~g9g = fh~ghandkf ~kg

whenever these composites are defined, then we can form the quotient category €/ ~.

2 Examples: (“Unusual maps”)
Here are some categories where the morphisms are not just functions.

o Matrices: Given a field k, let Maty be the category with objects the natural numbers
and Matg(n,m) being m x n matrices with entries in k. Then composition is matrix
multiplication.

¢ Relations: Rel is the category which has sets as objects, and morphisms A — B are
triples (A, R, B) where R € A x B is an arbitrary subset (a relation on A and B).
Composition of (A, R, B) and (B, S,C) is (A, S o R,C) with

SoR={(a,c)|3be Bs.t. (a,b) e Rand (b,c) e S}.

o Partial functions: Part has sets as objects and partial functions as morphisms. You can
view a partial function as a relation R € A x B satisfying ((a,b) € R and (a,b’) € R) =
b=1"V.
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o Formal proofs: We can form a category Proofs with objects being logical statements (in
some language) and morphisms being formal proofs of one statement from another (in a
given logical system), modulo a suitable notion of equivalence.

3 Examples: (Finite categories)

-/

a) A discrete category with 2 (or n) objects: j J
b) A category with only one non-identity morphism: j——j
¢) A category with two non-identity morphisms: j—/=j"

- H - .

Y | v e

.H.

B Functors

Definition: Let C and 2 be categories. A functor F': ¥ — 2 consists of:
¢ a mapping A —> F'A: ob% — ob 2 and
o mappings f — Ff: €(A,B) — 9(FA,FB)

such that

o F14 =1p4 and
o F(gf) = FgoFf (whenever gf is defined).

Examples: a) Any category ¢ has an identity functor. We can also compose functors.
This allows us to form the category Cat of small categories and functors between them.

b) If Z is a subcategory of %, there is an inclusion functor ¥ — ¥. If &/ x % is a product
category, there are projection functors m: &/ x Z — & and wy: & X B — B.

¢) Forgetful functors: We can define a functor U: Gp — Set which sends a group to its
underlying set and a homomorphism to its underlying function: it “forgets” the group
structure. Similarly, there are forgetful functors Rng — Set, R-Mod — Set, Top —
Set, ... and Rng — Gp forgetting the multiplication.

d) Free functors: For any set A, we can form the free group F A generated by A. Any
function f: A — B induces a unique group homomorphism f: FA — F B which sends
any a € A to f(a) € B. Given also g: B — C, we see that gf = gof, as they agree on
the generators of F'A. This gives a functor F': Set — Gp.

e) There is a functor Set — Top sending a set X to the discrete space on X.

f) There is a functor ab: Gp — AbGp sending G to G/[G, G], the abelianisation functor.

g) Powerset functor: Define &: Set — Set by setting &2 A to be the set of all subsets
of A, and if f: A— B, then (Zf)(A") ={be B|3Jae A st. b = f(a)} = f(A'), the
image of A" under f.

We can also make the powerset operation into a functor 2*: Set — Set®® (or
Set®? — Set) by setting (2*f)(B’) = f~1(B). Check that Z*(fg) = 2*(g)o2*(f).

Definition: A contravariant functor from % to 2 is a functor €°? — & (or € — 2°P). A
functor which does not reverse the direction of arrows is also called covariant.

Examples: h) Duals: Given a field k, we can form a functor (—)*: k-Mod — k-Mod®°?
by sending a vectorspace V' to its dual vectorspace V* and a linear map f: V — W to
f*: W* — V*_ which sends a linear functional ¢ € W* to ¢ f € V*.
Similarly, there is a functor (—)*: Rel — Rel° defined on objects by A* = A and
on morphisms by R* = {(b,a) | (a,b) € R}.
i) We can regard the operation ¥ —— %°P as a functor Cat — Cat. If F' is a functor
F: % — 2, then F°P denotes the same data regarded as a functor °? — Z°P. Note
that this is a covariant functor!
j) A functor between monoids is a monoid homomorphism.
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k) A functor between partially orderd sets is an order-preserving map.
1) Hom-functor: Given a locally small category %, there is, for every object A of C, a
hom-functor ¢ (A, —): € — Set:
% (A, —) applied to an object B gives the set €(A, B). € (A, —) applied to g: C — D
gives “post-composition with ¢”:

At o atoc2p

Simiarly, we have a contravariant hom-functor ¢’ (—, A): €°P — Set.

m) Let ¢ be a group, considered as a category with one object *. What is a functor ¥ —
Set? We have a set A = F(#) and for each g € ¢, a function g = Fig: A — A satisfying
T =14 and gh = gh. This forces g~! = (§)~!, so all § are bijections. So F is a
permutation representation (or action) of ¢ on the set A. Similarly, for a given field
k, functors 4 — k-Mod are the same thing as k-linear representations of ¥.

n) The fundamental group of a space defines a functor
m1: (I\Top) — Gp

(in fact (1\Top)/~ — Gp where ~ is base-point preserving homotopy).
The homology groups define functors

H,: Top/~ — Gp
(in fact H,: Top/~ —> AbGp).
Remark: Functors preserve commutative diagrams, so also properties defined by commutative
diagrams, such as isomorphisms.
C Natural Transformations
Natural transformations give a way of “moving between the images of two functors”.
Definition: Let €, 2 be categories and F,G: € — 2 two functors. A natural transformation
a from F' to G is a collection of morphisms in 7 {aa: FA — GA | A € ob ¥} satisfying (G f)oas =
ago(Ff)forall f: A— Bin¥.
aa
FA——>GA
Ffl O \LGf (Naturality condition)
FB a5 GB

If B: G — H is another natural transformation, then the composite Sa (given by (Ba)a =
Baa ) is also natural®. For every functor F, there is an identity natural transformation 1p: F — F.
So, given two categories ¥ and %, we have a functor category [%¢,Z]: objects are functors
F: ¢ — 2, morphisms are natural transformations between them. Note that [¢, 2](F,G) =
Nat(F,G) is the class of natural transformations from F to G.

If each a4 is an isomorphism in &, then we have another natural transformation G — F
given by {a;ls GA — F A}, since

(Ff)oy' = (agh)as(Ffar' = ag (Gfaala,') = ag (Gf).

This makes « an isomorphism in [¢, Z], and we call it a natural isomorphism.

2This is called “vertical composition”. For another way of composing natural transformations, see Example
Sheet 1.
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Examples: a) For any vectorspace V' we have a “natural” mapping ay : V — V** sending
v eV to (¢ —> ¢(v)). This is the V-component of a natural transformation 1; pmod —>
(—)**, i.e. for any linear map f: V — W, the diagram

v av> Vo

I

Wz W

commutes.

b) Recall the covariant powerset-functor &2: Set — Set. For eachset A,let { }4: A — P A
be the function a — {a}. Then { } is a natural transformation lge¢t —> 2.

¢) Let G, H be groups and f,g: G — H group homomorphisms. A natural transformation
a: f — g consists of an element ¢ = a,, € H such that, for any € G, we have

c

—

*
f(l’)l O
*

—

c

g(z)

<L %

i.e. g(x) = cf(x)ct, so a is a conjugacy between f and g.
d) The Hurewicz homomorphism

h: (X, 2) — H,(X)

is a natural transformation m, — IH,U, where U: (1\Top)/ ~—> Top/ ~ forgets the
basepoint and I: AbGp — Gp is the inclusion.

D Equivalences

Definition: Let F': ¥ — 2 be a functor.
f
a) We say F is faithful if, for each A—=B in ¥, the equation F'f = Fg implies f = g.
g

(i.e. “F”: €(A,B) — Z(F A, FB) is injective.)

b) We say F is full if, for all objects A, B of ¢ and morphisms h: FA — FB in 2, there
exists f: A — B with Ff = h. (¥(A, B) — 2(F A, FB) is surjective.)

¢) We say F is essentially surjective on objects if for every B € ob 2, there exists
A€eob¥% with FA = B.

d) We say a subcategory ¢’ of € is full if the inclusion functor ¥’ — % is a full functor
(i.e. €"(A,B) =%(A,B) for all A, Be %").

For example, Gp is a full subcategory of the category Mon of monoids, but Mon is not a full
subcategory of semigroups®.

Definition: Let ¥ and 2 be categories. An equivalence between % and & is a pair of functors
F: 6 — 2 and G: 2 — ¥ together with a pair of natural isomorphisms a: 1¢ — GF and
B: 19 — FG. We say € and Z are equivalent, write ¥ ~ &, if there is an equivalence between
them.

4 Lemma: (“equivalence < f.f.4e.s.”)
Let F': € — 2 be a functor.

1) If F is part of an equivalence (F, G, «, ), then F is full, faithful and essentially surjective
on objects.
it) The converse holds if we assume a ‘sufficiently big’ axiom of choice.

3Semigroups are monoids but not necessarily with a unit. Semigroup homomorphisms need not preserve the 1
in a monoid.
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PrOOF. i) F faithful: For any f: A — B in ¥, we can recover f from Ff:

A%B

éla/« ;laB

GFA W GFB
So f = ozg,loGFfoaA. So Ff = Fg implies f = g. (Of course, this also shows that G is
faithful.)
F full: Given h: FA —s FB, define f = aj'Ghaa:

A-lisp
;la,q ;laB
GFA ﬁ GFB

Then f also equals aglo(GFf)oozA as above, so GFf = Gh. But G is faithful by the
above, so h = F'f as required.
F essentially surjective: Given B € ob &, we have an iso fg: B — FGB.

ii) Suppose that F' is full, faithful an essentially surjective. We construct a functor G and
a natural iso 5: 19 — F'G: For each C € ob &, choose a pair (GC, f¢) such that B¢
is an iso C — FGC in 2. (We can do this because F is essentially surjective.) Given
h: C — D, the composite

c—" >p

501T~ ~J/5D

FGC F(Gh? FGD

can be written as F'(Gh) for a unique Gh: GC — GD in €, as F is full and faithful.
We check whether G really is a functor: given h': D — E| both G(h'h) and Gh/oGh are
the unique f that make

c—" s g

”J/Bc NiﬂE

FGC?FGE

commute, so they must be equal.

By construction, § is a natural transformation 1, — FG. We obtain a4 from the
component Spa: FA— FGFA: as F is full and faithful, Sp4 = F(a4) for a unique
ag: A—> GFA. The facts that a4 is an isomorphism and that « is natural follow from
F' being full and faithful (Exercise).

(Il

Examples: a) The category Set/B is equivalent to Set” (B-indexed families of sets). In one
direction, the equivalence sends f: A — B to (f~1(b) | b € B) (c.f. Examples 1 “New
from Old”) and a morphism

A—" sy

N

to the family (h|s-1(;) | b€ B). In the other direction, we send (A | b € B) to the disjoint
union [ [,c5 Ay = Upep{As x {b}} equipped with its projection to B.
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b) For a field k, the categories k-Mod¢ 4. and k—Mod?.pd. (of finite dimensional vectorspaces
and its opposite) are equivalent. The functors in both directions are V' —— V* and the
isomorphism V' — V** is that of Example a) in Natural Transformations (1C).

¢) The category Maty, from the “unusual maps” Example 2 is equivalent to k-Mod¢ q.: The
functor F': Mat, — k-Mods 4. sends n to k™ and a matrix M to the linear map it presents
with respect to the standard bases. To define a functor G in the other direction, we need to
choose a basis for each finite dimensional vectorspace: GV = dimV, and G(f: V — W)
is the matrix representing f wrt. our chosen bases. GF' is the identity functor (if we choose
the standard basis), and the chosen bases give us a natural isomorphism 1 — F'G.

E Representable Functors
Recall the hom-functors (A, —): € — Set. We can put all these together into a functor:
Definition: Let € be a locally small category. We define a functor Y': °P — [¥, Set], called the
Yoneda embedding, by setting YA = €(A,—), and Y(f: A — B) is the natural transformation
with components (Y f)c: €(B, C’)_Hof%(A, ).t

Remark: We could also define a similar functor € — [€°P, Set].

We should check that Y f is really a natural transformation and Y is really a functor. Given
f+A— Band g: C — D, we need

G(B.C) > €(A,0)

%’(B-,g)lgo ‘6’(‘4,!1)l90

(B, D) > %(A.D)

to commute. A morphism h: B — C'is sent to g(hf) and (gh)f respectively, so by associativity
of composition, Y f really is a natural transformation. Similarly associativity of composition also
implies that Y is a functor. (Check it!)

What is so special about the hom-functors ¢’ (A, —)?
Given a natural transformation a:: ¥ (A, —) — F, let us look at the naturality square

C(AA) 2> FA

| iFf

¢(A,B)—— FB
ap
for some f: A — B. We see that
ap(fela) = Ff(aa(la)),
i.e. ap(f) is completely determined by a4(14), so « itself is completely determined by the element
aA(lA) € FA.5
5 Theorem: (Yoneda Lemma)
Let € be a locally small category, A€ ob¥ and F: € —> Set a functor. Then there is a bijection
0: Nat(¢(A,—),F) — FA

between natural transformations € (A,—) — F and elements of F'A. Moreover, this bijection is
natural in A and F.

1y is contravariant!
5Think of a group homomorphism Z — G being determined by where 1 goes.
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PROOF. Given a natural transformation a: € (A, —) — F, we set 0(a) = as(1a).
Given an element z € FA, we define a natural transformation ¢(z): ¢(A,—) — F by

U(x)B(f) = Ff(z), ie.
Y(x)p: €(A,B) — FB
e
We check that ¢ (x) really is a natural transformation:
Given g: B — C in %, consider

(A, B) W8 pp

go—l‘f(z‘hg) ng

€(A,C)—— FC
Y(z)o

Chasing f € € (A, B) around the diagram, we see that we need Fg(F f(z)) = F(gf)(z), which is
true as F' is a functor.
We now show that 6 and v are inverse to each other:
o (@) =v(aa(la))p: €(A,B) — FBsends f: A— Bto Ff(aa(la)) = ap(fola) =
ap(f). So ¥(6(a)) = a.
o 0(¢(x)) = ¥(x)a(la) = Fla(z) = 1pa(z) = z.
We now fix F' and show that 6 is natural in A:
Given f: A — B, we have a square

Nat(€(A, -), F) —2> FA

_oY(f)\L lFf

B
A natural transformation o € Nat(4'(A, —), F') is mapped to (Y (f)) = apY (f)s(1p), going
down and then across. Now Y (f)p = —of, so we get agY (f)s(1s) = as(f).

%(B,B) —t> %A, B) 2 > FB

Ipt It ag(f)

On the other hand, Ffof4(a) = Ffoaa(la) = ap(f)® So the square above commutes, and 6 is
natural in A.
Exercise: Check that 6 is natural in F' for fixed A. O

Remark: This means that 0 is a natural transformation Nat(%( - ,—), F) — F for fixed F' and
also Nat(%' (A, —), - ) — evy for fixed A, where ev4 means evaluation at A. These can also be
combined into a more complicated natural transformation.

Definition: A functor F': ¥ — Set is called representable if it is isomorphic to € (A, —) for
some A € ob%. A representation of F' is a pair (A, x), where A € ob¥%, z € FA and ¥(z) is a
natural isomorphism ¢ (A4, —) — F'). We also call = a universal element of F'.

Corollary: The Yoneda embedding is full and faithful.

PRrROOF. Putting F' = ¥(B, —) in the Yoneda Lemma gives us a bijection between morphisms
C(A,—) — €(B,—) in [¢,Set] and elements in €(B, A), i.e. morphisms B — A in €. The
inverse is exactly the action of the Yoneda embedding on morphisms. (Check this!) This shows
that the Yoneda embedding is full and faithful. |

6Use the square before the statement of the Yoneda Lemma.
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6 Corollary: (“Representations are unique up to unique isomorphism.”)
If (A, ) and (B,y) are both representations of F': € —> Set, then there is a unique isomorphism
fi: A— B in € with Ff(z) =y.

PROOF. We have a composite isomorphism

By PV g T s )

As the Yoneda embedding is full and faithful, this is of the form Y(f) for a unique isomorphism
f: A— B in C (c.f. Example Sheet 1 Question 1(e)). So Y (f) = ¥(z)"'¢(y), or ¢(2)Y(f) =
¥(y). Via the bijection in the Yoneda Lemma this is equivalent to F'f(x) = y. a

Examples: a) The forgetful functor Gp — Set is representable by (Z, 1), since homomor-
phisms f: Z — G correspond bijectively to elements f(1) of the underlying set of G.
Similarly, Rng — Set is representable by (Z[z], x), etc.

b) The covariant powerset functor &2: Set — Set isn’t representable. (Exercise: prove
this!) But &7*: Set®® — Set is represented by (2, {1}), where 2 = {0, 1}, since subsets
A’ € A correspond bijectively to (indicator) functions x/y: A — 2.

¢) The dual-space functor ( )*: k-Mod°® — k-Mod, when composed with the forgetful
functor k-Mod — Set, is representable by (k, 1x).



CHAPTER 2

Limits and Colimits

A Terminal objects and Products

Definition: A terminal object in a category % is an object 1 such that for every object A € ob @,
there is a unique morphism A — 1.}

Proposition: Any terminal object is unique up to unique isomorphism.

PROOF. Suppose 1 and 1’ are two terminal objects in the category 4. Then there is a unique
morphism f: 1 — 1’ and a unique morphism ¢: 1’ — 1. This gives a morphism gf: 1 — 1, but
as there is a unigue morphism 1 — 1, we must have ¢gf = idy. Similarly fg = idy/, so 1 and 1/
are isomorphic. 0

The dual notion is an initial object: 0 is initial if there is a unique morphism 0 — A for
each object A.

Examples: In Set, any one-element set is terminal, and of course they are all isomorphic. The
empty set is initial.

In Top, the one-element topological space is terminal and the empty topological space is initial.

In Gp, the one-element group is both initial add terminal. We write it as 0 (= {*}) and call it
a zero object. Similarly in R-Mod.

In Rng, the one-element ring is terminal, and Z is initial.

Definition: A product of two objects A,B € ob¥% is a triple (P,ma,7p) of an object P in

% and two morphisms m4: P — A and wp: P — B, such that, if there is any other triple

(C,f: C — A, g: C —> B), then there is a unique morphism c¢: C — P such that mac = f and
2

mTBC = (.

Proposition: A product of A and B is unique up to unique isomorphism.

PROOF. Similar to terminal object, or note:
A product of A and B is a representation of the functor C — % (C, A) x € (C, B): €°P — Set.
We already saw that representations are unique up to unique isomorphism. ([l

We write A x B for “the” product of A and B.
Examples: In Set, the product of two sets A, B is their cartesian product
A x B=1{(a,b) |ae A be B}.

In Gp, R-Mod, Rng, Top, ... we can equip the cartesian product with the appropriate structure.
In Proofs, “and” is the product.

This generalises to products of any family of objects.

IWe call this a universal property.
2Another universal property.

13
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The dual notion is a coproduct: (A + B,ta,tp) with tg: A— A+ B, 1g: B— A+ B
such that for any C' with f: A — C and g: B — C there is a unique morphism h: A+ B — C
such that htq = f and hug = g.

Examples: In Set, the coproduct A + B is the disjoint union A L1 B. The same will work in Top,
but not in Gp: There the coproduct A + B is the free product A = B.

In R-Mod (and AbGp), the coproduct is the same as the product. We also call it biproduct
or direct sum and write A @ B.

In Proofs, “or” is the coproduct.

B Cones and Limits

Terminal objects and products are examples of limits, which we shall now define.

Definition: Let _# be a particular category (usually small, often finite). A diagram of shape
# in ¢ is a functor ¢ — %.

Remember the examples of finite categories from Section 1A (Example 3). If ¢ = (- —=-),
f . % .
a diagram of shape _# is a pair of parallel arrows A—=B in €. If ¢/ = ¢ \ \L , then a
g
. 9 .
diagram of shape _# is a commutative square

A—1>p
l o |
O?D
in €.

We sometimes call the objects vertices and the morphisms edges of the diagram.

Definition: Let D: ¢ — ¢ be a diagram. A cone over D is an object A € € together with
morphisms (called legs) p;: A — D(j) for all j € ob _#, such that for any morphism a: j — 5’
in _¢#, the triangle

A
N
D)~ D)
@)
commutes (i.e. D(a)p; = 7).
Remark: A cone is really a special sort of natural transformation. Consider the constant functor

Ay # —> ¢ which sends each j € ob ¢ to A € ob % and each morphism « to 14 in 4. Then a

cone is a natural transformation p: Ay —s D.3

Definition: Given two cones (A, ) and (B, v) over a diagram D, a morphism of cones is a
morphism f: A — B such that

commutes for all j € ob _¢.

30ne side of the naturality square collapses to give a triangle.
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The cones over a particular diagram form a category.

Definition: A limit of D is a terminal cone, i.e. a terminal object in this category of cones (often
written ()\ji L— D(j))jEObj)~

In pictures:

Dually, we have cocones under a diagram D (some people just say cone under D), and a
colimit is an initial cocone.

Proposition: Limits (and colimits) are unique up to unique isomorphism.

ProoF. Exercise. O

So we can speak of “the” limit of D (if it exists). We say ¢ has limits of shape ¢ if any
diagram D: ¢ — % has a limit.

Examples: a) A terminal object is the limit of the empty diagram. A product is the limit
of a discrete diagram with two objects. More generally, we say product for the limit of
any discrete diagram. We write Hjeob/ D(j) (or e.g. [, Ai). The legs are called
product projections.

b) The limit of a diagram of shape + ——= - is called an equaliser: Given a pair of arrows

f
A—=B in %, a cone over this diagram is
g

such that us = fu1 = guq, or (simpler) just
c f
C——>A ? B

with fc = gc. A limit cone is a pair (F,e) with e: E — A, fe = ge, such that any other
cone (C,c) factors through (FE,e): there is a unique morphism [: C' — FE satisfying
el =c.

e f
E ﬁ A ? B
31 c

C

A colimit of this diagram is called a coequaliser.
In Set, the equaliser of f and g is the set E = {a € A | f(a) = g(a)} equipped with
the inclusion map into A.
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¢) The limit of a diagram of shape \L is called a pullback. A cone over such a
. % .
diagram is just a commutative square:

K54
%Ylf with  pz = fur = gpa
B?C

i.e. the square commutes.
We write a pullback square as follows:

w1

P——>A AxcB—>A
- ]

\L \Lf or T2 f
B—>C B—F3—>C

Pullbacks are also called fibred products.

We say (A x¢ B,m,m2) is the pullback of f and g and 79 is the pullback of f
along g. A pullback of f with itself is also called the kernel pair of f.

In Set, we can construct pullbacks by first forming the product A x B and then the

fr
equaliser P — A x B of A x leC, i.e. the set {(a,b) € A x B | f(a) = g(b)}.
gr2
Notice that the colimit under this diagram is trivial (Exercise: find it!).
. % .
The appropriate dual is a pushout: the colimit of a diagram of shape i

7 Theorem: (“constructing limits”)

i) If € has equalisers and all small products, then € has all small limits.
it) If € has equalisers and all finite products, then € has all finite limits.
i11) If € has pullbacks and a terminal object, then € has all finite limits.

PROOF.
(i) and (ii) Let D: # — € be a diagram with _# small (resp. finite). Form the products

P= 1_[ D(j) and Q= H D(cod o),

jeob Z agmor _#

f
and the morphisms P——=(Q defined by
g

7rozf = Tcod o and Tag = D(a)wdomow
P—1>0 P—2L5Q
D(y) DG) 5z D)

Let e: L — P be an equaliser of (f, g). We claim that the family (A\; = me: L — D(j))
forms a limit cone over D. It is indeed a cone, because, for any a: j — j' in _Z, we
have

D(a)A; = D(a)mje = moge = To fe = mjre = Aji.
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Given a cone (pu;: M — D(j) | j € ob_#), there is a unique morphism m: M — P
satisfying m;m = p; for all j. Then fm = gm, as m,fm = mogm for all . (Exercise:
Check this carefully!) So there is a unique n: M — L with A\;jn = p; for all j.
(iii) It is enough to construct finite products and equalisers. Any finite product [}, A; can
be constructed from products of pairs: ((A; x Ag) x Az) x Ay...
The product of the empty family (which is also finite) is the terminal object 1.
Given two objects A and B, their product can be constructed as a pullback of

A

|

B—>1.

f
Given a pair of parallel morphisms A——= B, their equaliser can be constructed as the
g

pullback of
A

\L(lAﬁf)

A——> A x B.

(1a.9)
D4
A cone on this is kl/ satisfying h = k and fh = gk, so it is equivalent to a cone
A

!
over A—=B.
g
O

The categories Set, Gp, Rng, R-Mod, Top, ... all have small products and equalisers, so they
have all small limits. We call a category with all small limits complete, and a category with all
finite limits finitely complete.

Similarly, the categories have small coproducts and coequalisers, so they are cocomplete.

C Special morphisms

g
Definition: A morphism f: A — B in a category % is a monomorphism if, given any C—= A
h
with fg = fh, we necessarily have g = h. (f is left-cancellable.)
k
Dually, f is called an epimorphism if, given B—=D with kf = [f, we necessarily have
1
k=1
Examples: In Set, monos are injective functions and epis are surjective functions. In Gp, monos
are injective group homomorphisms and epis are surjective group homomorphisms. Similarly in
Top monos are injective and epis are surjective.

HOWEVER it is not always this simple: for example Z — @Q is an epimorphism in CRng,
and in Mon, the inclusion (N, +) — (Z, +) is epic (epimorphic).

Proposition: If f: A— B and g: B — A satisfy gf = 14, then f is monic and g is epic.
h
ProorF. If we have C—=A with fh = fk, then also gfh = gfk, i.e. h = k. So f is monic.
k

The statement that g is epic is dual, i.e.

gepicin 4 < ¢ monicin %°P.
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Definition: a) If gf = 14 as above, we call f a split monomorphism and g a split
epimorphism.
b) We say f: A— B is a regular monomorphism if it is an equaliser of some pair

g k
B—=C. Dually, a regular epimorphism is the coequaliser of some pair D—/—=A.
h 1

Exercise: Prove that any regular mono is indeed monic. Prove that every split mono is a
regular mono (consider fg and 15).

In Set, every mono is a regular mono, but not in Top. (In Top, regular monos are injections
f:Y — X for which Y has the subspace topology of X.)

In Set, any mono with non-empty domain is split, and the fact that every epi is split in Set is
equivalent to the axiom of choice. In k-Mods 4., all monos and epis are split.

8 Proposition: (“epi + regular mono = iso”)
If f is both an epi and regular monic, then it is an iso.

g
ProoF. If f: A — B is the equaliser of B—=C', then g = h as f is epic. But 1z is an
h

equaliser of (g, g), so by uniqueness of limits, f is an iso. a

Definition: A category is called balanced if every morphism which is monic and epic is an
isomorphism.

Set and Gp are balanced categories, but Mon and Top are not. (Top: continuous bijections
need not be homeomorphisms.)

In diagrams, we write A>f%B for monos and A$>B for epis.

9 Lemma: (“Pullbacks preserve monos.”)

Given a pullback square
h

Pf
;

—_
g

A
I
C

if f is monic, then k is monic.

l
PROOF. Suppose D—=P satisfy kl = km. Then fhl = gkl = gkm = fhm, so hl = hm. So
A

I and m correspond to the same cone over \L and hence [ = m. So k is monic. g
B—C

Definition: A subobject of an object A in a category % is either a monomorphism A’>——>A
in ¢, or an isomorphism class (in %/A) of such monomorphisms?. We write Sube (A) for the full
subcategory of ¥’/A whose objects are the monomorphisms A”>——>A. (Note that this category
is a preorder.)

A category € is well-powered if each Subg(A) is equivalent to a partially ordered set, i.e.
there exists a set {A;>—>A | i € I} of monomorphisms meeting every isomorphism class in

Sub(A).

Examples: Set is well-powered since Subset(A) ~ PA. Similarly, Gp, Rng, Top, ... are all well-
powered.

41t should be clear from the context which of these is meant.
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D Preserving Limits

Definition: Let F: ¥ — 2 be a functor.

a) We say F' preserves limits of shape ¢ if, given any diagram D: # — % and a limit
cone (A\j: L — D(j) | j € ob _#) for D, the cone (FA;: FL — FD(j)); is a limit for
FD.

b) We say F reflects limits of shape ¢ if, given D: ¢ — ¢ and acone (A\;: L — D(j));
such that (F\;: FL — FD(j)); is a limit for F'D, then (L, \;); forms a limit for D.

c) Wesay F creates limits of shape ¢ if, given D: ¢ — ¢ and alimit (u;: M — FD(j));
for FD, there exists a cone (A;: L — D(j)); over D in ¢ whose image is isomorphic to
(M, ;) ; and any such cone is a limit in .°

Corollary: In any of the version of the “constructing limits” Theorem 7, we can replace “€ has”
with either “€ has and F: € — 2 preserves” or “Y has and F: € — 2 creates”.

PROOF. Exercise. O

10 Examples: (“Creating limits”)

a) The forgetful functor Gp — Set creates all small limits; for example, if {G; | j€ Z} is
a family of groups, then the product set [] je g G; has a unique group structure making
the projections into homomorphisms, and this structure makes it into a product in Gp.
But Gp — Set doesn’t preserve coproducts (or other colimits)®.

b) The forgetful functor Top — Set preserves all small limits and colimits, but doesn’t
reflect them: given spaces X and Y, there are (in general) other topologies on the set

X xY
X x Y making the projections v \\ continuous, but not making it into a
X Y

product in Top. This functor also does not create products: while the choice of topology
on X xY does not change its image under the forgetful functor, not any such choice turns
X x Y into a limit in Top, so the last part of the definition is not satisfied.

¢) The inclusion functor AbGp — Gp reflects coproducts, but doesn’t preserve them. A
coproduct Y .., A; in Gp is non-abelian, unless all but one of the A; are trivial, and then
it coincides with the coproduct in AbGp.

A
d) Let € be a category and B € ob@. The forgetful functor U: /B — € sending ¢f
B

to A creates all colimits which exist in 4. A diagram D: ¢ — %/B is essentially a
diagram UD of shape # in ¢, together with a cocone (UD(j) — B)jeob s under it.
Given a colimit cocone (UD(j) — L) for UD, we get a unique L — B making all the
UD(j) — L into morphisms of /B, which “lifts” the colimit cocone to a colimit cocone

A C
in ¢/B. However, €/B — € doesn’t preserve all limits; e.g. if l/f and l/g are
B B

objects of € /B, their product in €/B is the diagonal of the pullback square

P——>A

L\

C——B
if this exists in €, and P £ A x C' in general.
5This last part of the sentence is very important, see e.g. the example on topological spaces.

6Tt does create filtered colimits (of which directed limits are a special case). If you don’t know what that is,
either look it up or ignore this comment.
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e) “Limits in functor categories are constructed object by object.”

Let € and 2 be two categories, and write €° 7 for the category of functors from the
discrete category on the objects of 2 to €, or “the product of ob Z copies of €”. Then
the forgetful functor U: [2, 6] —> €°P? creates all limits (and colimits) that exist in
©.

To see this, let D: _# — [2, €] be a diagram in the functor category, and suppose
that for every object A of &, the diagram UD,4 (i.e. UD evaluated at A)7 has a limit
(LA, )\3-4) in €. Then clearly L: ob2 — % is a limit of UD.® We want to show that
L is actually a functor L: 2 — € and is the limit of D in [2,¥]. Given a morphism
[+ A— Bin 2, we have, for any morphism a: j — j' in ¢, a commutative square

) D(a)a .
D(j)A D(j")A
D(j)fl \LD(J")J‘
D(j)B —— '\B
(7) D (4"

Here in the “usual” view, D(«) is a natural transformation from D(j) to D(j’), which
are functors ¥ — €. But we can also view it as saying that D(—)f is a natural
transformation from “evaluation at A” to “evaluation at B”. So (LA, D(j) fo)\j‘) forms
a cone on U Dp, which gives a unique morphism Lf: LA — LB making

Lf
LA——— LB

A B

DG)A 53 PUB
commute for each j € ob ¢ . This makes L into a functor 4 — ¢, the )A; into natural
transformations L — D(j), and L into the limit of D in [2, €].
(Exercise: Check all this.)
Note that this also shows that the functor “evaluation at A” eva: [2,€¢] — €
preserves all limits which exist in €.

11 Remark: (“Monos in functor categories”)
In any category, a morphism f: A — B is monic if and only if

A A
4]
A

—
7 B
is a pullback (i.e. iff its kernel pair is (A4,14,14).) Hence a functor which preserves pullbacks must
preserve monos. Therefore, supposing 4 has pullbacks’, a morphism a: F —s G in a functor
category [Z,%] is monic if and only if each component ac: FC — GC is a mono in €. (c.f.
Example Sheet 1 Question 7.)!°

1a
—s

There is a connection between initial objects and limits:

"Note that UD4 = D4, because evaluation at A doesn’t involve any morphisms of 2.
81.e. this is just defined on objects.

90r at least it must have kernel pairs, i.e. specific pullbacks.

s s obvious, and = follows from ev 4 preserving pullbacks (or kernel pairs).
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12 Lemma: (“Initial object as limit”)
Let € be an arbitrary category. Then € has an initial object if and only if the diagram l¢: € — €
has a limit.!!

PROOF. “=" Let I be an initial object of ¥, and write As: I — A for the unique morphism
from T to each object A. Then we claim that (I, \4) forms a terminal cone on l¢. Indeed, it is a

Aa Ap
cone as / \ commutes for each morphism f in %, by uniqueness of \p.

AﬁB

B M I

Gi th B, 14, th hi : B I satisfi i.e.

iven another cone (B, u4) over lg, the morphism py: B — I satisfies NA\\A/AA (i.e

Aapr = pa) for all A (as the p are a cone), so py is a morphism of cones. But any morphism of

B———1

cones v satisfies #N /\1211 , 80 v = ur. So py is the unique morphism of cones, so (I, \4) is
the limit as claimed.

“<” If we have a limit (I, A4) for 14, we want to show I is initial. As we already have a

morphism A4: I — A for each object A, we must show that it is unique, i.e. given f: [ — A,

we have f = \4.
We certainly have fA; = A4,

I
*/ \\M
I ﬁ A
so we just have to show that A\; = 1;. Putting f = A4, we get AaA; = A4 for all objects A, so Ar

is a morphism of cones from the limit cone to itself.

Ar
[I——>1

N

A

So as there is a unique one, \; = 1j. O

E Projectives

Definition: An object P of a category € is projective if given any diagram (of solid arrows)

P
n \L
g
1;
A—>B

f

with f epic, there exists h: P — A with fh = g.
Dually, I is injective in ¢ if it is projective in €°P.

A>—>B
L
1

HNotice that if % is not small, this is not a small diagram.
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Remark: Note that 4 need not be unique!*?

If € is locally small, P is projective iff €' (P, —) preserves epimorphisms.
Lemma: For any locally small €, all representable functors are projective in [€, Set].

PROOF. The dual of “monos in functor categories” (Remark 11) says that o: F — G is epic
in [€,Set] iff ay: FA — GA is surjective for all A. Now, given

%(Aa _)
1
F——>G,

by the Yoneda Lemma [ corresponds to an element y € GA. As « is epic, there is an z € F A with
a4(x) =y. Then z corresponds to v: € (A4, —) — F with ary = . O

Lemma: A coproduct of projectives is projective.
ProOOF. Exercise. O
Examples: In Set, every object is projective (as any epi is split, which uses the Axiom of Choice).

In Gp, any free group is projective. In fact these are the only projective objects in Gp.
In R-Mod, a module M is projective if and only if it is a direct summand of a free module.

12This is called a weak universal property.



CHAPTER 3

Adjunctions

A Definitions and examples

Definition: (D.M. Kan) Let F: ¥ — 2 and G: 9 — % be two functors. An adjunction
between F' and G is a specification, for each pair (A € ob%, B € ob Z), of a bijection betwen
morphisms FFA — B in 2 and morphisms A — G B in ¥, which is natural in A and B.

(If € and 2 are locally small, this means that the functors €°P? x 9 — Set sending (A, B)
to 2(FA, B) and to ¢ (A, GB) are naturally isomorphic.)

We say that F' is left adjoint to G, or that G is right adjoint to F, and write (F -4 G) to
indicate that there is such an adjunction.

FA— B
A— GB
f: A — GB for the morphism corresponding to f: FA — B, and §: FA — B corresponds to
g: A —> GB. Notice that f = f and § = g."

F
Notation: Given ¢ LT ~ 9, we sometimes write for the bijection, and we write
G

13 Examples: (Adjunctions)

a) The free functor F': Set — Gp is left adjoint to the forgetful functor G: Gp — Set, as
homomorphisms FFA — B are uniquely determined by mappings A — GB. Similarly
for free rings, free R-modules, etc. (We will look at the meaning of the naturality in
Section B.)

b) The forgetful functor Top —> Set has both left and right adjoints: The left adjoint D
equips a set A with its discrete topology, since all functions DA — X (for X an arbitrary
space) are continuous. The right adjoint I equips A with the indiscrete topology.

c¢) The functor ob: Cat — Set has a left adjoint D sending a set A to the discrete category
DA (with objects the elements of A and only identity morphisms), since a functor DA —
% is determined by its effect on objects. The functor ob also has a right adjoint I, which
sends A to the category with objects given by the elements of A, and exactly one morphism
a —> b for each pair (a,b) € A x A. (This makes all morphisms into isomorphisms!)?

The functor D itself also has a left adjoint 7g. mo(%) is the set of connected compo-
nents of %, i.e. the quotient of ob % by the smallest equivalence relation which identifies
¢ and d whenever there exists a morphism ¢ — d in €. (Given a functor F': ¥ — DA,
F is necessarily constant on each connected component of €, as each morphism must go
to an identity morphism. So F' induces a function 704 — A.)

d) Let 1 denote the category with one object # and one morphism. A functor F': 1 — %
picks out an object F'x of €. This F is left adjoint to the unique functor ¥ — 1 < F'=
is an initial object of €.

F is right adjoint to € — 1 < F'+ is a terminal object of €.

1We sometimes call this adjunction operation ﬁ “transpose”.
230 you could think of DA as lots of completely separated objects and IA as “one big connected blob” of
isomorphic objects.

23



3. ADJUNCTIONS

e) Let Idem be the category with objects being pairs (A4, e), where Aisaset ande: A — A
satisfies eoe = e (is idempotent). (Morphisms (A,e) — (A4’,¢’) are functions f: A — A’
ALy
satisfying el/ l/e' )
A
We have a functor F': Set — Idem sending A to (A4, 14), and a functor G: ldem — Set
sending (A, e) to {e(a) | a e A} = {a € A | e(a) = a} (the image of e, or the fixed points
of e). G is both left and right adjoint to F:

B
\Le , i.e. f must land in the
B

f
A—>
o morphisms f: (A,14) — (B, e) must satisfy 1AH

7

(A,14) — (B,e)
A—> {e(b) |be B}

image of e. This gives a bijection

B4
o morphisms f: (B,e) — (A4, 14) must satisfy e HlA so f is completely deter-
B ? A

(B,e) — (A,14)
{e(b) |be B} — A’
f) Let X be a topological space, €X the ordered set of closed subsets of X and #X the

set of all subsets of X.3 The inclusion X — 22X has a left adjoint A — A, since for
any closed set C' we have A< C & A< C.

mined by what it does on the image of e, which gives a bijection

F
(An adjunction between posets P __T ~ @ always looks like Fa < b < a < Gb.)
G

g) (Adjunctions of contravariant functors)
Consider two sets A and B and a relation R € Ax B. We have mappingsr: A — B
sending

A r(A)={be B| (Yae A)((a,b) € R)}*
and [: B — A sending
B+~ I(B')={ae A|(Vbe B)((a,b) € R)}.
r and [ are contravariant functors between posets, and we have
Acl(B)Ys AxB cRe B cr(A)

We can regard [: B — P A°P as left adjoint to r: P AP — P B. (We sometimes
say that [ and r are contravariant functors adjoint on the right.)
h) The contravariant powerset functor £2* : Set®® — Set is right adjoint to £2*: Set —> Set°?,

since functions A — B correspond to relations R € A x B, and hence to functions
B — ZYA.

B Properties

S .. .. FA—B
What does the naturality in A and B of the bijection ————— mean?
A— GB

3Remember how posets can be regarded as categories.
4Those b which are related to everything in A’.
5All a € A are related to all b e B’.
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Naturality in A says that for a: A’ — A in €,

“(A,GB) —Ls 9(F 4, B)

ml i_d%

¢(A',GB) ﬁ 92(FA', B)
commutes, and naturality in B says that for b: B — B’ in 9,

2(FA, B) s 4(AG, B)

ml lcm

I(FA,B) —>¢(4,GB)

commutes, i.e. o B
goa = goFa and bof = Gbof.
So in fact we have natural transformations like the ones appearing in the Yoneda Lemma:
9(FA,—-) — €(A,G-)
and ¢(—,GB) — 2(F—, B).

So these isomorphisms are completely determined by where the identity goes:

FAEASpA corresponds to A" SGFA.
Any FA—loB corresponds to A" sara-ToaB.
(Le. f = flpa = Gflpa = Gfna.)
GBlGHBGB corresponds to FGB —2> B.
Any A—25GB corresponds to FA e FGB—25B.

Lemma: Thena: A — GFA form a natural transformationn: l¢ — GF. (Dually, the eg form
a natural transformation ¢: FG — 14.)

PRrROOF. Given a: A — A’, we have:

A" GFA ST G A corresponds to FA-Fos pa

a , a Lpar
At M GRA corresponds to FA-EA S pA T2 p oy

So the following square commutes
A % AI

mi lm,

GFAWGFA/

and 7 is natural. O

Notation: Given a functor G: 2 — € and an object A of €, we write (A | G) for the category
whose objects are pairs (B, f), where B € obZ and f: A— GB in ¢, and whose morphisms

A
f f!
(B, f) — (B’, f) are morphisms g: B — B’ in & such that / \ commutes.

GB ? GB’
g

(Similarly, there is a category (G | A).)
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14 Theorem: (“Adjunctions via initial objects”)
Let G: 9 —> € be a functor. Then specifying a left adjoint for G is equivalent to specifying, for
each object A € ob €, an initial object of (A | G).

PROOF. “=" Let F: ¥ — 2 be a left adjoint for G. We show that (FA,n4) is an initial
object of (A | G).
Given an object (B, f) of (A | G), the triangle

A FA
! b
nAl \ commutes iff lAl \ commutes.

So there is a unique morphism h: (FA,n4) — (B, f) in (A | G), namely f.

“<” Given an initial object (F'A,n4) of each category (A | G), we already have the action of
F on objects. We want to see what F' does on morphisms, that it is a functor and that it is adjoint
to G.

Given f: A — A’, we get an object (A#A’%GFA’) of (A | G). So there is a unique

A%A/

morphism g: FA — F A’ making nA\L ym/ commute. So we define F'f = g. The unique-
GFA ?g GFA

ness of g makes F' functorial (check this!). To see that F is adjoint to G, take any h: FA — B.

Then the composite A " GFA-C"SGB is a morphism A — GB. Given k: A — GB, there
A
k
is a unique morphism h: FFA — B making "Al/ \ commute. So we get a bijection.
GFA T GB
Naturality in B is built in:
h na Gh
FA—>B A—> GFA—>GB
Given \ b, We get \ \LGb .
n' an'
B’ GB’
Naturality in A needs n to be a natural transformation, which was built in to the definition of
F:
k h
A—GB FA— B
Given ai/ /k’ , we get g, o /hl’ satisfying
A’ FA
AI
7 ,
a . k
\LWA'
A GFA' "> GB
k=
nA ) /
l m

i.e. both h and h'Fa are morphisms (FA,na) — (B,k) = (B,k'a) in (A | G), so they are the
same. So F' 4 G. 0

Example: ¢ has limits (resp. colimits) of shape # if and only if the functor A: ¢ — [ 7, €]
sending an object A to the constant diagram A4 has a right (resp. left) adjoint.
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15 Corollary: (“Uniqueness of Adjoints”)
Any two left adjoints of a given functor G: 9 — € are canonically naturally isomorphic.

PROOF. Suppose F and F’ are both left adjoints of G. Then (FA,n4) and (F'A,n/,) are
both initial objects of (A | G), so there is a unique isomorphism a4: (FA,n4) — (F'A,7/,) in
(A | G). The fact that « is a natural transformation follows from uniqueness. O

16 Lemma: (“Adjoints compose”)

F H
Given ¢ ——=9=—=& with F 4 G and H 4 K, then we have HF 4 GK.
€] K

Proor. We have bijections
HFA— C
FA—SKC
A— GKC
natural in A and C. O

17 Corollary: (“Adjoints in squares”)
Let

gj

¢

G

<
T

g
SR

&
be a commutative diagram where all of F', G, H, K
4
&

of left adjoints commutes up to natural isomorphism.

ave left adjoints. Then the diagram

T

Y—\V9

T

PROOF. Both composites of the square are left adjoint to HF = KG, so they are isomorphic
by uniqueness of adjoints (Corollary 15). O

C Units and Counits

Definition: Given an adjunction (F' - G), the natural transformation 7: 1¢ — GF is called the
unit of the adjunction. Dually, e: FG — 1p is the counit of the adjunction.

Recall that, given F' 4 G, we have the following correspondances:

na Gf

FA-l o <5 4 GFA GB

Fg

A—?~aB — FA FGB—-B

Recall also that naturality in A and B means

ga =gFa and bf = Gbf.

18 Theorem: (“Adjunctions via units and counits”)
F

Given € =—=9, specifying an adjunction F' 4 G is equivalent to specifying natural transforma-
G

tions n: l¢ — GF and e: FG — 14 satisfying the triangular identities: n and € must make
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the diagrams

F- par G X5 GFG
\ \LGF and \ lce commute.
1p 1G
F G

PRrROOF. Given an adjunction F' 4 G, the unit A" SGFA corresponds to FAZEAS P A and

to FA i FGFA-“sF A, so the first triangular idetity follows. Dually, the second one follows
using €p.

Conversely, given 7 and e satisfying the triangular identities, we must show that the mappings
f > Gfony and g —> epolF'g are inverse to each other, and natural in A and B. We have
commutative diagrams

Fna FGf
FA—— FGFA——> FGB

1 era J;B
FA v

FA > B

and

\L i lem
nA (NGB B
v A

GFAWGFGB?GB

which prove that the mappings are mutually inverse. Naturality in A and B follows easily from
functoriality of F' and G. O

F
Examples: a) Consider Set T ~Gp, the “forgetful/free” adjunction. For a set A, the unit
G

Na: A —> GFA is the inclusion of the generators, and for a group B, eg: FGB — B
is evaluation.

b) The abelianisation functor ab: Gp — AbGp is left adjoint to the inclusion I: AbGp — Gp.
For a group G, ng: G — IabG = G/[G, (] is the quotient map. For an abelian group
A, eq: ablA —> A is the canonical iso A/[A, A] — A (note that [A, A] is trivial).

()
c¢) Consider a space X and the adjunction X I~ ¢X given in the Adjunctions Exam-
I

ple 13f). Then the unit is A < A4, i.e. any set is inside its closure, and the counit is
F < F, i.e. any closed set contains its closure.
d) Write down the unit and counit for any example of adjunction that you know.

19 Lemma: (“reflections”)
Given an adjunction F' 4 G with counit e: FG — 14,

1) G is faithful < €p is an epimorphism for all B.
it) G is full and faithful < ep is an isomorphism for all B.

PROOF. i) Given g: B — B’, its image Gg: GB — GB’ corresponds under the ad-

junction to FGB—2>B—" =B’ (by naturality of €). So if ¢': B — B’ satisfies Gg =
Gg' and ep is an epi, then g = ¢’ and so G is faithful.

Conversely, if G is faithful and geg = ¢g’eg, then Gg = Gg’, so g = ¢’ and so €p is
epic.
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ii) Suppose € is an isomorphism. Then by i) G is faithful. Given f: GB — GB’, we can
form the composite

Ff
FGB ——> FGB’

g = TEBI leB/

B B’

Then ¢ satisfies FGg = Ff (as eg and ep/ are isos), and so Gg corresponds under the
adjunction to ep: F'Gg = ep/F f, which is also what f corresponds to, so Gg = f, so G is
full.

Conversely suppose that G is full and faithful. We have a morphism ngp: GB — GFGB,
which is Gg for a unique g: B — FGB (existence as G is full, uniqueness as G is faith-
ful). We show that g is the inverse of eg: We have the triangular identity

GB —2% GFGB
g

Ge
&\LB

GB

which gives egg = 15 as G is faithful.
We can also use the other triangular identity and naturality of € to show that geg =
lraB-

€B
FGB ——>B

: 1
Fnep=FGg FGB lg

4 A
FGFGB;.:>FGB

€FGB

So €p is an isomorphism.

Definition: a) An adjunction where G is full and faithful is called a reflection.
b) A reflective subcategory is a full subcategory 2 of € for which the inclusion functor
9 — € has a left adjoint.

Examples: a) We have already seen that AbGp is reflective in Gp. Given a group G, the
commutator subgroup [G,G] has the property that G/[G, @] is abelian and any homo-
morphism G — A with A abelian factors uniquely through G — G/[G, G].

b) Let € denote the full subcategory of AbGp whose objects are torsion groups (those in
which every element has finite order). Then ¢ is coreflective in AbGp: Given A, the
subgroup A; of torsion elements in A is the required coreflection, since any homomorphism
B — A with B a torsion group factors through the inclusion A; — A.

c) Let ¥ = Top and let Z be the full subcategory of compact Hausdorff spaces. Then the
Stone-Cech compactification X of an arbitrary space X is its reflection in 2.

D Adjoint Equivalence

An adjunction whose unit and counit are both isomorphisms is in particular an equivalence of
categories; we call it an adjoint equivalence.

20 Lemma: (“Any equivalence can be made into an adjoint one.”)
F ~ ~

Consider an equivalence ¢ =—=9, a: l¢——>GF, f: 19——>FG. Then there exists an ad-
G

joint equivalence (F' 4 G) with unit c.
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PROOF. We define € as the composite

= Fag)™! -1
e: FG2re=P papa "0 S pg—° 1o,
B
1@ —> G
Note here that g = FGB, since B\L \Lﬁpc commutes and (3 is pointwise epic. (Similarly,
FG@FGFG
agr = GFa.)
We have to verify the triangular identities. We have
F e > FGF
F(xl FGFaAF(N
v
FGF —> FGFGF - FGF —> F
Brar (Fagr) Br

which reduces F—2>FGF—L>F to 1p, and similarly G 2C L GFG—C55G is reduced to 1g.
O

E Adjunctions and Limits

21 Theorem: (“Right adjoints preserve limits”)
Suppose G: 9 —> € has a left adjoint F. Then G preserves all limits which exist in 2.

Proor 1. “Apply adjunction to each leg.” Consider a diagram D: ¢ — Z. Then cones
over GD with summit A correspond to cones over D with summit F'A. Hence, if D has a limit
(Aj: L —> D(j))jeob ¢, each such cone corresponds to a morphism FA — L, which in turn
corresponds to a morphism A — GL. So (GA;: GL — GD(j)) is a limit cone in €. O

PROOF 2. %Recall that 2 has limits of shape ¢ iff the “constant diagram” functor A: Z — [ 7, 7]
has a right adjoint. So suppose that ¢ and 2 have limits of shape _#, for some #. Form the
commutative square

Al lA
,C| —— 9
[/ 6) 5 L7 9]
where all the functors have right adjoints. So by the “adjoints in squares” Corollary 17, the diagram

of right adjoints

L7, 1L g 4

limjj/ llimj
PG %
commutes up to isomorphism, i.e. G preserves limits of shape ¢. O

For a converse to this theorem, we need to construct initial objects in the categories (A | G),
under the assumption that 2 has and G preserves suitable limits.

22 Lemma: (“limits in (A | G)”)
Consider G: 9 — € and A€ ob€¢. If 2 has and G preserves limits of shape £, then (A ] G)
has limits of shape #, and the forgetful functor U: (A | G) — 2 creates them.

6This proof uses more assumptions: we need all limits of shape ¢ to exist in Z and in . But it gives the
“moral reason” for this result to be true.
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Proor. Consider a diagram D: ¢ — (A | G). Write the object D(j) as (UD(j), f;) where
fi+ A— GUD(j).

Suppose (A;j: L —> UD(j))jeob ¢ is a limit for UD. Then (GA;: GL — GUD(j)) is a limit
for GUD as G preserves limits. But (f;)jeob ¢ is a cone over GUD, since the edges of UD lie in
(A | G). So we get a unique f: A — GL such that GAjof = f; for all j, i.e. such that the ),
become morphisms (L, f) — D(j) in (4 | G).

S W — K

“GUDL — GUOG)

.

They form a cone over D, since U is faithful (which implies that commutativity of diagrams
carries over to cones over D), and it is straight forward to verify that this is a limit cone in (4 | G).
[Verify it!] O

23 Theorem: (Primeval Adjoint Functor Theorem)
Suppose 2 has all limits. Then a functor G: 2 — € has a left adjoint if and only if it preserves
all limits.

PROOF. = Any right adjoint preserves limits.

< For each A€ ob ¥, (A | G) has all limits by the “limits in (A | G)” Lemma 22, so it has an
initial object by the “initial object as limit” Lemma 12 (Section 2D). Then by the “Adjunctions
via Initial objects” Theorem 14, G has a left adjoint. O

However, if a category 2 has limits of all diagrams over categories “as big as itself”, then &
is a preorder.

The Primeval Adjoint Functor Theorem is useful for posets (c.f. Example Sheet 3 Question
2), but to get a result applicable to general categories we need to impose “size restrictions” on &
and/or € to ensure that the “large” limit in the “initial object as limit” Lemma can be reduced
to a small one.

Definition: Let € be a category. A set of objects {A4; | i € I} in € is called weakly initial if for
any B € ob% there is an ¢ € I and a morphism h;: A; — B in ¥.

24 Theorem: (General Adjoint Functor Theorem)

Suppose 2 is locally small and complete (i.e. 2 has all small limits). Then a functor G: 9 — €
has a left adjoint if and only if G preserves all small limits and for each A€ ob¥, (A ] G) has a
weakly initial set.

PROOF. = G preserves small limits as a right adjoint, and for each A, (FA,n4: A — GFA)
is an initial object of (A | G), i.e. a singleton weakly initial set.

< By the “Limits in (A | G)” Lemma 22, each (A | G) is complete; also (A | G) inherits
local smallness from 2. so we just have to prove

Claim: If &7 is complete, locally small and has a weakly initial set, then </ has an initial object.

PROOF OF CLAIM. Let {4;,j € J} be the weakly initial set in «/. Form the product P =
[l;es Aj. Then for any C € ob &/ there is a morphism P — C' (i.e. P is a weakly initial object”).

Form the diagram

PP ()

7Just choose the appropriate projection from the product and the morphism given from the weakly initial set.
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with edges all morphisms P — P that exist in «/. Let I — P be a limit for () (industrial
strength equaliser). Note that I>—>P is monic®.

For every C € &, there exists a morphism I — C, namely I>—>P——>C'. We want

f
to show that this is unique. Suppose there are two morphisms I—=C. We can form their
g

equaliser E>——>1. FE is an object of &/, so there is a map P — FE. Then the composi-
tion P E I P occurs as an arrow in (f), so [ P E I P =

I>—>P.% But I>—>P is monic, so I P E I =1id;. So E —> [ is split epic, so
EHI#C =E——>I-—5C implies f = g. So I is an initial object of <. |

This proves that G has a left adjoint, using the “Adjunctions via initial objects” Theorem 14.
O

For another version of the Adjoint Functor Theorem, we need:

Definition: A coseparating family ¢ for a category € is a family of objects 4 = (G; | i € I)
f

such that for any pair A—=B in € with f # g, there is an i € I and an h: B — G; such that
g

hf # hg.

25 Theorem: (Special Adjoint Functor Theorem)

Suppose both € and 2 are locally small, and that Z is complete and well-powered and has a
coseparating set. Then a functor G: 9 —> € has a left adjoint if and only if G preserves small
limats.

IDEA OF PROOF. (A | G) inherits completeness, local smallness and well-poweredness from &
and the coseparating set for & gives a coseparating set for (A | G).

So we just need to prove that if o/ is complete, locally small and well-powered and has a
coseparating set, then 7 has an initial object.

Take the product P of the coseparating set and a limit of a representing set of subobjects of P.
This gives a smallest subobject I>——P. It is easy to show that there is at most one morphism
I — C for any C, but constructing one is more complicated and uses the coseparating set (and
local smallness). O

PROOF. “=" @ preserves all limits that exist in & as it is a right adjoint.

“<” The “limits in (A | G)” Lemma 22 implies that each (A | G) is complete; it also
inherits local smallness from %. The Remark 11 “Monos in functor categories” implies that the
forgetful functor (A | G) — & preserves monos (as it creates and so preserves limits by “limits in
(A} G)”), so the subobjects of (B, f) in (A | G) are those subobjects B>——B in Z for which
f: A — GB factors through GB’>—>GB. So (A | G) inherits well-poweredness from 9.

Given a coseparating set .7 for 2, the set . = {(B, f)| B€ ., f: A— GB} (i.e. taking

g
all possible such f) is a coseparating set for (A | G): if we have (C, fo) —= (D, fp) with g # h
h

in (A | G), there exists B € . and k: D — B such that kg # kh. Taking f = (Gk)fp, we have
(B,f)e " and kg # kh in (A | G).

A

GC?GD%GB

Note that .’ really is a set, as & is locally small.

8This follows from the property of a limit.
9Because the identity is also a morphism in (}).
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So we have to show that if a category « is complete, locally small, well-powered and has a
coseparating set, then &/ has an initial object I.

Let {B;, j € J} be a coseparating set for «/. Form P = ]_[jeJ Bj (possible as 7 is complete),
and a set { Pp>——>P| k € K} of representatives of subobjects of P (possible as &7 is well-powered).
Form the limit of the diagram with edges all the Py>—>P for k € K (possible as <7 is complete).

The legs I — Py are also monos (proof similar to “Pullbacks preserve monos” Lemma 9). We
have
(I>——P)<(P,>—>P)
as subobjects, for all k € K. So I>—>P is the smallest subobject of P. We want to show that I
is initial in <.
First we show that there can be at most one morphism I — C for any C € ob.«/. Suppose

f f
we have [—=C'. We can form the equaliser F>—>I—"=2C. Then F>——>I>—>P is a
g g

subobject of P, but I>—>P is the smallest, so E — [ is an isomorphism, and so f = g.

Now we want to construct a morphism I — C.

For C € ob/, form the set T = {(j,f)| j € J, f: C — B;}, and the product Q =
]_[(j, ) B;. We have a canonical morphism h: C — @), defined by composition with the pro-

g
jections C N Q for all (4, f) € T. This h is monic: for DﬁC#Q with hg; = hgo,
92
\JN \L"T(J‘,f)
Bj

we have fg1 = fgo for all (5, f) e T.

g1
D—=cC —5Q
x J/Tf(j,f)
B,

So as the B; form a coseparating set, g1 = go.

We also have a morphism [: P — () defined by P N Q. Form a pullback

ﬂ_?\ \L”(j,f)
B,

R—T>C
nH
P—>Q

Here m is also monic, as pullbacks preserve monos (Lemma 9), so R is a subobject of P. But
I>——P is the smallest, so there is a morphism I>——>R,

7Rf(f
I;\m}lﬁ@h

which gives a morphism I — R — C' as desired. O
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Examples: a) Consider the forgetful functor U: Gp — Set. From the “creating limits”

Example 10a) we know that Gp has all small limits and U preserves them; and Gp is
locally small. To show U has a left adjoint, we need to find a weakly initial set of (A | U)
(so we can use the General Adjoint Functor Theorem): given a set A, any function
f: A— UG factors through U(H — @) where H is the subgroup generated by the
image of f. And UH has cardinality < max{Xg, card A}. But, up to isomorphism, there
is only a set of groups of a given cardinality, and there is only a set of functions from A
to any such group. However, this argument uses most of the machinery required for the
explicit construction of free groups.

In fact, in many cases, verifying that each (A | G) has a weakly initial set is “equiva-
lent in work” to actually constructing a free functor. There are some (more complicated)
examples where some cardinality arguments will work but not give you an explicit con-
struction, but we can’t cover those with our knowledge.

Consider the inclusion G: KHaus — Top. By Tychonoff’s Theorem, KHaus has and G

f
preserves all small products; similarly for equalisers, since if X —=Y is a parallel pair
g

in Top with Y Hausdorff, then the equaliser F>——X is a closed subspace of X, and so
compact if X is. KHaus and Top are both locally small, and KHaus is well-powered, since
subobjects of X correspond to closed subspaces of X. Moreover, [0, 1] is a coseparator
for KHaus, by Uryson’s Lemma. So by the Special Adjoint Functor Theorem, G has a
left adjoint 3, the Stone-Cech compactification functor.

In fact, Cech’s original proof of existence of 8 goes as follows: given X, form the
product P = ]_[f: X [01] [0,1], and the canonical map h: X — P defined by nsh = f,
and then take SX to be the closure of the image of h. This is exactly the construction
given by the SAFT.



CHAPTER 4

Monads

A Monads and their Algebras

F
Suppose we have an adjunction ¢ T > . How much of this can we describe without men-
G

tioning the category 27
We have the composite T' = GF: ¥ — %, and the unit n: 1¢ — T and the natural trans-
formation Gep: GFGF — GF which we denote pu: TT — T. These satisfy the identities

T Tn T T nr T
(1) lﬂ and (2) lu
17 1T
T T

by the triangular identities of the adjunction, and

Tu
TTrT —>TT

ol @ s

T ——>T
by naturality of e.

Definition: A monad T = (7,7, ) on a category % consists of a functor T': ¥ — % and natural
transformations n: 1¢ — T (the unit) and p: TT — T (the multiplication) satisfying the unit
laws (1) and (2) and associativity (3).

Example: Given a monoid M, we have a monad structure on the functor M x (—): Set —> Set;
the unit n4: A — M x A sends a to (1,a), and multiplication pa: M x M x A — M x A sends
(m,n,a) to (mn,a).

Is this induced by an adjunction? Yes!

Consider the category M-Set of M-sets!; this has a forgetful functor G': M-Set —> Set, which
has a left adjoint F' given by FA = M x A with M-action by multiplication on the left factor.
This gives rise to the monad just described.

Definition: Let T = (T, n, ) be a monad on a category ¢. A T-algebra is a pair (A, a) where
Aeob®% and a: TA —> A satisfies

n
A—">TA TTA L5174

5 ) J/a and ;LAL (5) la

1These are sets with an action of M on them.

35
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A homomorphism f: (A4, «) — (B, 8) of T-algebras is a morphism f: A — B in ¥ satisfying

Tf
TA——>TB

ACIE

We write €T for the category of algebra and their homomorphisms.

Examples: a) The identity functor is a monad on %, its category of algebras is €.
b) There is a list monad (£, n, 1) on Set as follows:
Z: Set —> Set

X — {lists (z1,...,2) | k =0, each z; € X}
and appropriately on morphisms. The unit is defined by
nx: X — ZX
x — () “singleton list”
and the multiplication
ux: 2LX — X
(11, -y T1n)y - oy (Tk1y -+ oy Tem)) ¥ (T11, -+ -, T1ny -« oy Thom)

is concatenation.
An algebra for .Z is a monoid. Indeed, it is a set X with a map

0: X — X
()»—»e
(1,...,TK) —> X1 - T+ T

giving multiplication?.
¢) Powerset monad: Take the covariant powerset functor &: Set — Set; the unit is

nx: X — PX
x —> {x} “singleton set”
and multiplication
px: PPX — PX
{Anie I} — | A

iel
is union.
An algebra for &2 is a complete lattice:
PX — X
A—\/A (join of A)
X+—T
Fr— 1

Indeed, we get a partial order on X: a < b if \/{a,b} = b. You can check that indeed
a<TVaeX and L < aVae X using Diagram (5). As soon as we have all joins and a
1, we also get all meets (by the join of the set of lower bounds, which is non-empty as
we have ).

Algebra homomorphisms are those which preserve arbitrary joins, so the category of
algebras is that of sup-complete semilattices.

20f all arities at once. Here () is the empty list.
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B Eilenberg-Moore Category

T

F
Proposition: (Eilenberg-Moore) There is an adjunction ¢ __LT >€" inducing the monad T.
GT

PrOOF. We define GT as the forgetful functor (A, a) — A, f +—— f, and FTA = (TA, ju),
which is an algebra by (2) and (3) (called a free T-algebra). We let FT(f: A — B) = T'f, which
is a homomorphism by naturality of u.

Clearly GTFT = T, so we take 7 to be the unit of the adjunction. The counit e: FTGT —s 14r
is defined by €(4,q) = a: (T'A,pa) — (A, ) (which is a homomorphism by (5) and natural by
(6)). The triangular identities for 1 and € are just diagrams (1) and (4). Also, GTepr4 = pua by
definition of F', so the monad induced by (FT 4 GT) is (T, n, u). O

There may be other adjunctions inducing the monad (7,7, u).

D
Example: Consider Set__T ”Top. The monad this induces on Set is the identity monad, which
U

1
has Set_ f ~Set as its Eilenberg-Moore adjunction.

But the Eilenberg-Moore adjunction is a terminal object in the category of adjunctions inducing
T. We will make this more precise.

Definition: Given a monad T = (T,n,u) on €, let Adj(T) be the category whose objects are

9 2 174
adjunctions FH/G inducing the monad T, and whose morphisms F/HLG — F’%\L(;' are functors
€ € €

H: 92 — 2’ such that HF = F' and G'H = G.

26 Proposition: (“Eilenberg-Moore is terminal”)
9

Given a monad T = (T,n,u) on € and an object Fq\—ﬂ/G of Adj(T), there is a unique morphism
€

9 —E s qr
N
¢
in Adj(T).

Proor. Existence: We define K by KB = (GB, Gep) (check it is a T-algebra) and K(g: B — C) =
Gg: (GB,Gep) — (GC,Gec) (check it is a homomorphism).
Clearly, GTK = G; and

o KFA = (GFA,G&FA) = (TA,;LA) ZFTA,
o KF(f: A— A)=GFf=Tf =F"yf.

Uniqueness: Suppose we have another functor K': 2 —s €7 satisfying GTK’' = G and
K'F = F'. Then we can write K'B = (GB, ) for some algebra structure 8p: GFGB — GB
(this is because of the first equation K’ satisfies). As K'(g: B — C) = Gg: (GB, 85) — (GC, B¢),
B must be a natural transformation 5: GFG — G. We also know that Spa = pa = Gepa, since
K'F=FT.
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Now, for any B, the diagram

GFGep
GFGFGB —> GFGB

Gergp=pnGB=BFGB BB

GFGB T GB

must commute by naturality of 5. However, it would commute if we substitue Geg for 8, and
GFGep is (split) epic by one of the triangular identities. So g = Gep for all B, and K’ = K.
O

There is also an initial object in Adj(T).

C Kleisli Category

F
Given an adjunction ¢ _T > inducing T on €, we could consider the full subcategory 2’
G

on objects of the form FA. Then morphisms FA — FB in 2’ must correspond to morphisms
A —> TB in €. We can use this idea to construct a “smallest” adjunction inducing T.

Definition: Given a monad T = (T, n, 1), the Kleisli category %t is defined by:
ob%r = ob%;

Morphisms A ~~—+B in %t are morphisms A — T'B in ¥. The identity morphism A oA
in 61 isna: A — TA. The composite of two morphisms A'\/L\>B and B~_+C in %y is

At s o0

| 2%e]

TC.

We check that this really is a category:

: 1 .
A-leptiop = a—ts TB_% TTB

1 - \LMB
TB -\

TB
using (1).
f
Aeatop= 4 LT
UA\L ETITB lrs
Tf V4 =\
TA TTB——>TB

using naturality of n and (2). Given A \f/»\>B Leo wQ\>D, we have

5)

— -
—

P T Tpp= P
(ho)f = A=—>TB—577C "% TTTD 5 TTD = h(9f)
T~ - Hc HTD 1D
(af) ~ < N v v l
TC - >TTD -, ~>TD

using naturality of u and (3).

Fr
Proposition: (Kleisli) There erists an adjunction € __T >%r inducing T.
Gr
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PROOF. We define Fy by FrA = A and Fr(A—'>B) = A~ >B " STB. This clearly

. i . iy . f g .
preserves identities; we check it preserves composition. Given A———>B———>C in €,

f
(Prg)(Frf) = A——>B—">TB = Fe(gf)
9f’7"4 vg ng
C Wﬁb'>fTC?
Tncl 7_1?0
=\
T7Y747Ej>1Yj

using naturality of 7 and (1).

Tf nB

We set GrA = TA and Gr(A~+B) = TA—LSTTB"2>TB. Then

A T
Gr(A~oA) = TA—"5TTA =174

1:°, iﬂA
TA oy

TA

using (1), and

f ¢ T TT T, _
Gr(A-LoB-o0) = TA—LsmrB L 770 P IO = Grl9)Ga(f)
~ :
> N éHB rTc [ 2%e]
TE{; i§>%TTCW'%§'$ﬂTC

\G'Rfi)’

using naturality of u and (3).
We have GrFrA =TA and

T T
CrFPr(A—T5B) = TAHfTBrgTTB _ Ty,

 °, “B
1rp i

TB

So GrFr = T. We take 7 as the unit of the adjunction (Fr - Gtr). The counit € is defined by

TA-““+A =174. Check that this is a natural transformation FyGp —> legy.
For the triangular identities, we have

nGrA

GrA —"5 GoFrGrA = TA -T2 7174

\LGTEA \LT]-TA

GrA 1\ TTA

|

TA
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using (2), and

FrA “I—/l\\> FrGrFrA = A % TA ﬂ TTA =A '\JL\“>A
Ss,.- ) . . \LTlTA
FrA ga - ra TTA
e \LHA
TA
also using (2). Finally Grepa = Gr(lra) = TTA Tra TTA— oTA = 14, so the adjunc-
tion (Fr - Gt) induces T. O
27 Proposition: (“Kleisli is initial”)
The Kleisli adjunction is initial in Adj(T).
7
ProoF. Given FTA\LG inducing T, we define H: 61 — P by HA = FAand H(A "\A'/—'«>B) =
€

F €
F A%fF GFB—2>FB. It is easy to see that H preserves identities, and more generally
that HFp(f) = Ff for any f € mor%. We check that H preserves composition: Consider

AL -B-LC. Then
i F FGF Ge :
H(s[) = FA—""> FGFB “"% FGFGFC S FGFC = H()H(/)
€FB €EFGFC lEFC
% \%
FB > FGFC > FC

using naturality of € twice. Also GHA = GFA =TA = GrA, and

GH(A-+B)=ara—" ~qreFB— "2 sqFB
1A o o
= Gr(/f).

So H is a morphism in Adj(T).
For uniqueness, suppose H': € — & is a morphism of Adj(T). Since H'Fr = F, we have

H'A = FA for all A (i.e. HA = HA). Any morphism A-L<B i %1 can be rewritten as

Frf €EB . . e . . .
A'\~'»«1>TB wim>B, and H’ maps the counit ¢; of the Kleisli adjunction to the counit exp of

Ff

(F 4 G)3, so H'f must be the composite F'A FTB25FB,ie. H = H. a

The Kleisli category ¢t is equivalent to the full subcategory of €T given by the free T-algebras
(Exercise).

Since Fr is surjective on objects and (as a left adjoint) preserves coproducts, it follows that %1
has coproducts if ¥ has them. But in general, it has few other limits and colimits. In constrast:

D Limits and Colimits of Algebras

28 Proposition: (“Limits and colimits of algebras”)

i) GT: €T — € creates all limits which exist in €.
i) If € has colimits of shape ¢, then GT creates colimits of shape F iff T preserves them.

3Recall how the correspondance works: both correspond to 17p: TB — TB.
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PROOF. i) Consider a diagram D: ¢ — %T. (We write G for GT). Write D(j) =
(GD(j),65) with §;: TGD(j) — GD(j). Suppose (Aj: L — GD(j))jeob ¢ is a limit
for GD in €. Then (TA;: TL — TGD(j)) is a cone over TGD, and the composites

TLHTGD( )HGD( /) form a cone over GD.

N

TGD(j) ——ep—> TGD(j")

TGD
. -/
GD(j) T GD(j")
So there is a unique #: T'L — L such that
B
TL———>1L

TML lM (1)

TGD(j) > GDU)

commutes for all j. We want to show that § gives L a T-algebra structure, i.e. we have
to show Bnyp = 11 and BTG = [ur. Both of these conditions mean showing that two
morphisms with codomain L are equal, so by the limit property of L, it is enough to show
that their composites with A; are equal for each j.

We have

so \;jBnr, = A; for all j, and

AiBTS = 6;TATS by (1)
= §;T8,TT\, by T(f)
= 0jap() TTA; by 6; being T-algebra structure
=0;TAjpr by naturality of
= \;BuL by ().

So (L, B) is a T-algebra, and the A; are T-algebra homomorphisms, by (f). To show that
(A\;j: (L, B) — D(4)) is a limit for D in ¢, consider any cone (v;: (N,~v) — D(j)) over
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D in €7.

o N

TGD(j) ——— > TGD(j")

A\
5 /N\ d;
D(j) —————— GD(f)

Then (v;: N — GD(j)) is a cone in €, so there is a unique factorisation n: N — L
over (\j: L — GD(j)) in €, and again composing with the A; shows that n is in fact a
morphism in ¢T.
The same argument shows that any cone over D whose image in % is a limit of GD

is indeed a limit cone in €.

ii) The proof of <« is exactly like i), except that we need to know that T (and TT') preserve
the colimit of GD. For =, we note that T is the composite GTFT, and FT preserves
colimits because it is a left adjoint.

|

Because of this proposition, it would be useful to know when the comparison functor K is part
of an equivalence of categories.

E Monadicity

Definition: An adjunction (F' 4 G) is monadic if K is part of an equivalence. We also say
G: 9 — ¥ is a monadic functor if it has a left adjoint and the adjunction is monadic.

Lemma: Monadic functors reflect isomorphisms.

PRrROOF. If G: 9 — € is monadic, then there is F 4 G such that G = GTK. As K is part
of an equivalence, it is enough to show that GT: €T — ¥ reflects isos (for any monad T). Given
f:(A,a) — (B,B3) in €T with f: A — Banisoin %, then f~! is also a morphism of T-algebras:

ol f = ftfalf = f1BTfTf =[5

So this already tells us that some functors are not monadic.

Example: The forgetful functor Poset — Set doesn’t reflect isos.
f(e)
c |
N — o)
a b ‘
f(a)
is an iso in Set but not in Poset.

But to properly characterise monadic functors, we need more. The main idea is that algebras
are coequalisers of morphisms between free algebras. We will make this more precise.
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f
Definition: a) A reflexive pair in % is a parallel pair A—=B for which there exists
g

r: B— A with fr = gr = 1 (such an r is called a common splitting). A reflexive
coequaliser is a coequaliser of a reflexive pair.
b) A split coequaliser diagram is a diagram of the form

f
AjB#C
=7 w7
t s

satisfying hf = hg, hs = 1¢, gt = 1p and ft = sh. Recall from Example Sheet 2 that
this makes h into the coequaliser of f and g.

f
¢) Given a functor G: 9 — %, a parallel pair A—=B in Z is G-split if there exists a
g

split coequaliser diagram in %:

Gf
GA—=GB-L>C
~Gy ' w__~
t s

29 Examples: (“Split coequalisers”)

F
Given an adjunction ¢ T > @ inducing (T, n, 1) and a T-algebra (A, o),
G

Ta @
TTA——=TA——> A
NS
NnTrA na

Fao
is a split coequaliser diagram. So FGFA—=F A is G-split.
€EFA

Similarly
GFGep Gep
GFGFGB —————=GFGB——>GB
~~_Gerep — ~_
NGFGB NGB

is a split coequaliser diagram.

30 Lemma: (“T-algebras are coequalisers”)
Given a monad T on € and an algebra (A,«), the structure map «: (TA,ua) — (A, @) is a
coequaliser in €.

ProoF. Counsider the diagram

TTa Ta
TTTA—=TTA——>TA

Tpa
HTAl J/HA \La
To
TTA—=TA——>A

HnA

in 4T. Here the bottom row is a split coequaliser in 4 and T« is (split) epic. Given any
f:(TA us) — (B,B) in €T with fTa = fua, we get a unique g: A — B in ¢ satisfying
ga = f. Then as T« is epic, g is an algebra homomorphism, so (4, a) is a coequaliser in €*. O

Notice that (T'A, ua) = FTGT(A, ). So the “primeval” idea behind monadicity theorems is

F
that we recognise a monadic adjunction ¢ T > 9 by the fact that for any B € ob 2,
G

€FGRB €
FGFGB ? FGB ——> B
€B
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is a coequaliser?. This diagram is called the standard free presentation of B.

31 Theorem: (Precise Monadicity Theorem)
A functor G: 9 — € is monadic if and only if

i) G has a left adjoint and
it) G creates coequalisers of G-split parallel pairs.

32 Theorem: (Crude Monadicity Theorem)
Consider G: 9 — € such that

i) G has a left adjoint,
it) G reflects isomorphisms,
i11) 9 has and G preserves reflezive coequalisers.

Then G is monadic.

PROOF. (Precise =) If G is monadic, it has a left adjoint by definition. For ii) it is sufficient to

f
show that GT: €T — € creates coequalisers of G™-split pairs. If (A, a)j(B, B) is a parallel

pair in €T and AjBHC is a split coequaliser in %, then TA:TBHTC is also a
M K_/

coequaliser. So as h/J’Tf = hfa = hga = hTg, we get a unique v: T'C — C such that

B s 10

ﬂl (1) lv ()

comimutes.

To show that (C,~) is a T-algebra, i.e. that yne = 1¢ and YTy = yuc, it is enough to show
ynch = h and YIYI'Th = yucTTh, as h and TTh are coequalisers. These two equations follow
from naturality of n and u, (1) and the fact that (B, ) is a T-algebra. Then h: (B, ) — (C,7)
is the coequaliser of f and g in €T (proof as in previous lemma).

(Precise <= and Crude) We have

9 % <g'JI‘
G FT
€
We will construct a left adjoint L: €T — 2 for K and the unit and counit of L 4 K and show
that they are isos.

Given a T-algebra (A4, «), form the coequaliser

lea,e)

FGFA ﬁ FA——=L(A, «)

in 2. We can do this as (Fa, ep4) is a reflexive pair with common splitting F'ny4, so by (Crude iii)
it has a coequaliser, or because it is G-split (see Example 29 “Split coequalisers”) so by (Precise
ii) it has a coequaliser.

At is G-split: see the “split coequalisers” Example 29.
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Any algebra homomorphism F': (4,«a) — (B, ) induces two commutative squares

FGFA—/=FA

€
FGF fl \LF f
Fp

FGFB—/=FB
€FB

Fo
FA

and hence a unique morphism L(f): L(A,a) — L(B, ). So L is a functor.
To get the counit §: LK — 14, consider B € ob 2. Then KB = (GB,Gep), so we have a
coequaliser
FGep

FGFGB jG FGB ——> LKB
€EFGB H
s v
B

But ep has equal composite with this pair, so we get a morphism g: LKB — B.

In fact, (FGep,ergp) is G-split (see Example 29 “Split coequalisers”), so either by (Precise
ii) or by (Crude ii and iii)®> we deduce that §p is an isomorphism (i.e. €p is also a coequaliser for
this pair). Naturality of 6 follows from it being an iso and LK f being uniquely determined by the
coequaliser property.

For the unit 6: 14r — KL, we have KL(A,a) = (GL(A, a), Gepa,q)) and

GFa
(GFGFA, uTA) —=% (GF A, a) —°—> (A, )

Gepa

is a coequaliser in €T by the “T-algebras are coequalisers” Lemma 30. So via
GFa @
GFGFA Gﬁ GFA———A

FA :
L PAQ)
Glia,a) v

GL(A, )

we get a homomorphism @(4.q): (A4, ) — (GL(A, @), Gera.q))- (Note that Gl 4 o) is an algebra
morphism by naturality of Ge.) To show that ¢4 4) is an iso, it is enough to show that

GFa -
GFGFA Gﬁ GFA—— A
€EFA

is a coequaliser in %. But
Fa l(A,a)
FGFA=—2 FA—>L(4,q)
is a coequaliser by definition, so using (Precise ii), G creates coequalisers of G-split pairs, so it
also preserves them, or using (Crude iii) G preserves reflexive coequalisers. Thus ¢ is a natural iso
(naturality follows as for 0). O

Exercise: Check that § and ¢ satisfy the triangular identities®.

33 Examples:

a) For any category 2 whose objects are sets A equipped with algebraic operations A¥ —s A
satisfying equations, and whose morphisms are homomorphisms, the forgetful functor
G: 2 —> Set is monadic iff it has a left adjoint. (For infinitary structure, the free functor
may not exist, e.g. for complete Boolean algebras; but for finitary structure it does, c.f.
Example Sheet 3 Question 6.) This can be proved using the Precise Monadicity Theorem,
c.f. Example Sheet 3 Question 9.

51t is also a reflexive pair.
6We don’t actually need it for this proof, but they do, and we’ll need it later.
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construct the

n steps.

c)

4. MONADS

Remark: For a finitary algebraic category €, the forgetful functor ¥ — Set satisfies
the hypotheses of the Crude Monadicity Theorem.
Any reflection is monadic: this can be proved directly (see Example Sheet 3 Ques-
tion 7), but also follows from the Precise Monadicity Theorem. If G: 2 — € is the

f
inclusion of a (full) reflective subcategory, and A——=B is a G-split pair with splitting
g

A é B—">C in %, then ¢t € mor 7 (as 2 is a full subcategory), and so ft = sh
KZ/ K_g,/

is in . We have shsh = sh, so sh is an idempotent in 2. But an idempotent e splits
iff the pair (e, lgome) has an equaliser (Exercise, see Example Sheet 2 Question 2), so
the splitting (s,h) in € can be obtained by the equaliser of (sh,1g). But 2 is closed
under all limits which exist in €, so (up to isomorphism) h, s and C also live in Z (i.e.
G creates coequalisers of G-split pairs).

Let € < AbGp be the full subcategory of torsion-free abelian groups. The inclusion
% — AbGp has a left adjoint A — A/A; (where A; is the subgroup of elements of finite
order in A), so it is monadic by b). Also, the forgetful functor AbGp — Set is monadic
by a).

However, the composite adjunction % AbGp Set isn’t monadic since it in-
duces the same monad on Set as AbGp=—=Set.Thus monadicity is not stable under
composition. (Note that the hypotheses of the Crude Monadicity Theorem are stable
under composition.)

9

In general, given an adjunction FTA G where 2 has (at least) reflexive coequalisers, we can

€

“monadic tower”

where T is the monad induced by (F' 4 G), K is the comparison functor to the Eilenberg-Moore
adjunction, L is the left adjoint of K constructed as in the proof earlier, S is the monad induced
by (L -4 K), and so on.

Definition: We say (F 4 G) has monadic length n if this process produces an equivalence after

Examples: a) The forgetful functor G: Top — Set has a left adjoint D, but has monadic

length oo, since GD = 1lset, 7 = p = 1;,,, and so all categories in the monadic tower are
isomorphic to Set.

b) An equivalence of categories has monadic length 0, and a monadic adjunction has monadic

length 1.

The composite adjunction of torsion-free abelian groups in sets from Example 33c) above
has monadic length 2. Another example of the same form is given by the reflective
subcategory of Stone spaces (compact 0-dimensional spaces) inside the category KHaus
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of compact Hausdorfl spaces, which itself is monadic over Top (meaning the forgetful
functor is monadic). The composite adjunction will again have monadic length 2.



CHAPTER 5

Abelian Categories

A Pointed Categories, Kernels and Cokernels

Definition: A zero object is an object 0 in a category ¢ which is both initial and terminal. A
zero morphism 0: A — B is the unique morphism factoring over the zero object A — 0 — B.!
A category with a zero object is called pointed.

Examples: The categories of pointed sets Set,, monoids Mon, groups Gp, abelian groups AbGp,
R-modules R-Modare all pointed.

Notice that when % is locally small and pointed, the functor €' (—, —): €°P x ¥ — Set factors
over the category of pointed sets. We then say that % is enriched in Set,.

Lemma: If € is enriched in Sety, and I € ob €, the following are equivalent:
(i) I is initial;
(i1) I is terminal;
(iii) 1 =0: T —> 1.

Proor. Clearly (i) = (iii) and (ii) = (iii). Moreover, (iii) implies that for any f: I — A we
have

AN S IRy SN S NN S AN S Ny

So (iii) = (i). Similarly, (iii) = (ii). 0

Definition: Given f: A — B in a pointed category ¢, the kernel of f is the pullback of 0 — B

along f:
A
lf

0——B

ker f

ik

The cokernel of f is the pushout

%B

A

i Jtoss
0 H’E{er I

(We write arrows which are kernels or cokernels as indicated.)

Notice that when ¥ is pointed, any morphism 0 — A is a (split) mono. So as pullbacks
preserve monos, every kernel is a mono. (Similarly every morphism B — 0 is a split epi.?)

Definition: A normal monomorphism is a morphism which occurs as the kernel of some mor-
phism. A normal epimorphism is a morphism which occurs as the cokernel of some morphism.

8o composing anything with 0 gives 0.
2We won’t do all the dual results in what follows, you can supply them yourself.

48
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Lemma: Any normal mono is a reqular mono.

PROOF. The morphism k: K — A is the kernel of f: A — B if and only if it is the equaliser
f

of A—=B. O
0

Examples: In Gp, every mono is regular, but a mono K — G is normal iff K is a normal subgroup
of G. But every epimorphism f: G — H is normal, since if f is surjective then H =~ G/Ker f.

In Sety, every mono is normal, since if f: A — B is injective, then it is the kernel of
B — B/~ (where by ~ by < by = by or {b1,b2} < Imf). But not every epi in Set, is nor-
mal.

34 Lemma: (“A normal mono is the kernel of its cokernel.”)
Let € be pointed with cokernels. Then f: A — B is a normal mono in € iff f = ker(coker f).

PROOF. « trivial. = Suppose f = ker(g: B—> C). Let ¢ = coker f. Then as gf = 0,
g factors as hgq.

Given e: E — B with ge = 0, then also ge = hge = 0, so e factors uniquely as fI. Then (as
qf = 0) this implies that f = kerg. O

Lemma: Let € be pointed. Then any mono has a kernel, and that kernel is 0: 0>——=>A.

PRrROOF. If f: A>——B has a kernel, then we see from

that Ker f>—=0 is a mono since pullbacks preserve monos. But Ker f>——=0 is always split
epic, so here it is an isomorphism.

Moreover, for any mono f, if for any g: C — A we have fg = 0, then as f is monic, g = 0,
so indeed

is a pullback. O

35 Lemma: (“kernel of zero”)
The kernel of 0: A — B is 14.

PROOF. Exercise. O
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Recall that the kernel pair of f: A — B is the pullback of f along itself:
R(f)

m% A
=]
A

— B

Lemma: Let € be pointed with pullbacks. Then given f: A — B, we have ker f: Ker f — A =

Ker 1~ "5 R(f) 2> A.

PRrOOF. Use “pullback composition” (Question 10 on Sheet 1) on the two pullbacks

ker

Kerm

0

R( m ZsA
YR
B

!

!

36 Lemma: (“Kernels and pullbacks”)
Let € be pointed with kernels. Consider

Kot sa—2sp

kl (1) l 2) lb

KID?AIH,BI
g

where f =kerg and f' = kerg'.

(i) If b is a mono, then (1) is a pullback.
(i1) If (2) is a pullback, then k is an iso.

PROOF. (i) Consider hi: D — A and hs: D — K’ such that ahy = f'hy. Then
bgh1 = g'ahy = ¢'f'he = 0, so as b is a mono, gh; = 0. So h; factors uniquely over
the kernel of g: D . A . As f' is monic, also kl = hg, so (1) is a pullback.

o
(ii) f': K' — A’ satisfies ¢'f’ = 0 = bo0. So as (2) is a pullback, there is a unique
h: K — A such that ah = f/ and gh = 0. Then there is a unique [: K’ — K such that
fl="h,as f =kerg. Then f' = ah = afl = f'kl, so as f’ is monic, kl = 1. It remains
to show lk = 1x. For this, consider gflk = 0 = gflx and aflk = ahk = f'k = aflk.
So as (2) is a pullback, flk = flg, but f is monic, so Ik = 1.
O

ALTERNATIVE PROOF. Consider the cube

0———B

A

KDHJ‘ b
v a
k 0 > B



B ADDITIVE CATEGORIES 51

in which the top and bottom side are pullbacks, as f = kerg and f’ = kerg’. If b is a mono, the
back is also a pullback, so as “pullbacks of pullbacks are pullbacks” (see Example Sheet 2), the
front square (which is (1)) is also a pullback, which prove (i). If (ii) is a pullback, then “pullbacks
of pullbacks are pullbacks” implies that the left-hand square is a pullback too, which makes k£ an
isomorphism. O

B Additive Categories

f
Consider two morphisms A——=B between abelian groups A and B. We can define the
g

“pointwise sum” f + g: A —> B by (f + g)(a) = f(a) + g(a). Then as B is abelian, f + g is also
a group homomorphism. So the homset AbGp(A, B) has an abelian group structure.

Definition: A locally small category &7 is enriched in abelian groups if the functor
A (—,—): P x o/ —> Set
factors through the forgetful functor AbGp — Set.

Le. & is enriched in abelian groups if each homset 2/ (A, B) is an abelian group, and compo-
sition
(A, B) x o (B,C) — (A, C)
(f,9) — af

is “a group homomorphism in each variable”, i.e.
g(fi+ f2) =gfi +g9f>  and
(g1 +92)f =9 f +ga2f.

Some people call such an & preadditive or an Ab-category.

Examples: AbGp, R-Mod, AbGp, ; (torsion free abelian groups). Also “abelian topological groups”
Ab(Top). But not Gp! A ring R is a preadditive category with just one object.

37 Lemma: (“preadditive = product=biproduct”)
If o7 is enriched in abelian groups, and A, B,C € ob </, the following are equivalent:

(i) There exists o C
A / \ B

(i) There exists A B making C into a coproduct A + B.

C

making C' into a product A x B.

™1 T2
(iii) There exist morphisms A%?C%?B satisfying w1, = 1y, mate = lg, mat; = 0,

mity = 0 and 11w + Loy = 1¢.

PROOF. (i) = (iii): Take m, 72 to be the given projections, and take ¢; and o to be the
morphisms defined by the first four equations. To verify that ¢ym + tam = 1¢, it is enough to
show they have the same composite with 7 and mo. Now w1 (1171 + tama) = w1171 + TlaTe =
™ + 0= 71'1].0, and 7T2(L17Tl + L27T2) =0+ T = 71'2].0.

(iii) = (i): We want to show that A<——C——>B is a product, i.e. given f: D — A and
g: D — B, we want to find a unique h: D — C such that mh = f and mh = g.

If such an h exists, then h = 1oh = (1171 + tam2)h = 11 f + t2g, so then it is unique. Moreover,
m1(t1f + teg) = f+0g = f and ma(t1 f + t2g) = 0+ g = g, so such an h exists.

Dually (ii) < (iii). O

Notice that the conditions in (iii) make ¢1, to split monic and 7y, w5 split epic.
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Definition: Given A, B in a category 7 enriched in abelian groups, we call (C,my,ma,t1,t2)
satisfying the conditions in the previous lemma the biproduct of A and B. We usually write

C=A®B.

38 Remark: (“zero morphism”)
If o7 is enriched in abelian groups and pointed, the composite A — 0 — B must be the additive
0e (A, B), as @(A,0) x (0, B) — (A, B) is a group homomorphism in each variable.

Lemma: If (A@® B, m,ma,t1,t2) is a biproduct and </is pointed, then 11 = kerma, 1o = kerm,
71 = coker 1o and my = coker ¢.

PrROOF. We already know mor; = 0 and 7o = 0. Consider A BN A®B < B with
D /f

maf = 0. Then f = (1371 +1oma) f = tym1 f +0, so setting h = 71 f we have f = 11h. For uniqueness
consider h: D —> A such that f = ¢1h. Then t1h = f = 11w f, but ¢; is (split) monic, so h = m f.
The other statements are similar or dual. O

Definition: An additive category is a pointed category 7 which is enriched in abelian groups
and has biproducts.

Notice that this definition is self-dual, i.e. &7 is additive iff &/°P is.

Examples: AbGp, R-Mod, AbGp, ; , Ab(Top).

f
We will write AQB x C' for the morphism induced by f: A — B and g: A — C, and

B+ CMD for the morphism induced by h: B— D and k: C — D.

39 Proposition: (“Additive structures are unique.”)
Suppose o/ is locally small, pointed and has binary products. Then any additive structure on (the
homsets of ) o is unique.

PROOF. As soon as «/ has an additive structure, any product A x B becomes a biproduct
A @® B by the “products=biproducts” Lemma 37, so 1app = t171 + tomo.

f
Now consider A—=B. Then we have
9

(1) (f,9) (1) 1 (f.9)
A—>APA——>B = A—>ADA— AP A ——> B,

so (f,9) G) = (f,9)(t1m + tom2) G) = (f,9)um G) + (f, 9)tams G) = f+¢. So addition

in the homsets is completely determined by the “product-coproduct” structure of o7. Since the 0
must be A — 0 — B (see Remark 38 “zero morphism”) and if an inverse —f of f exists, it is
unique, the additive structure on &/ is unique. g

Notation: In an additive category, any morphism A@® B — C @ D is determined by four mor-
phisms f: A— B, g: A—> D, h: B— C and k: B — D. We write

(5 )
AeB-"%coD.
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Then composition of such morphisms is matrix multiplication:

f
PR = (h k) (1171 + 1272) @ = hf + k.

It now makes sense to look at functors which preserve this additive structure:

Definition: Let o7, & be additive categories. A functor F': o — A is additive if its action on
each homset

(A, B) — B(FA,FB)
f— Ff

is a group homomorphism.

Remark: Any additive functor preserves the zero object, which is very closely intertwined with
the additive structure (recall “zero morphism” Remark 38). To show this, notice that the zero
object is the only object whose identity morphism is the zero morphism. So as an additive functor
F preserves identities (as it is a functor) and the zero morphism (as it is additive), F(0) is also a
zero object.

40 Proposition: (“Additive functors preserve biproducts.”)
Let F: of — % be a functor between additive categories. The following are equivalent:
(i) F is additive.
(i) F preserves biproducts.
(i4i) F preserves finite products.
(iv) F preserves finite coproducts.

PROOF. (i) = (ii): By the definition of biproducts, we see that if F' preserves + and 0,

F(m) F(mz)
FA%F(A @ B)?F(E)
L1 L2

satisfies the conditions making F'(A @ B) into a biproduct of F(A) and F(B).

f 1
(i) = (i): Given A—=B, the sum f +gis A ) A@ A Y9 B So
g

(1) (Ff Fg)

F(f)+F(g) = FA— SFA®FA=> F(A®B)—2% ">FB = F(f +g).

(iii) =(ii) and (iv) = (ii) by the “products=biproducts” Lemma 37.

For (ii) =(iii) and (ii) =(iv), we just need to show that F' preserves the zero object (i.e. the
product of the empty family and the coproduct of the empty family). For this it suffices to show
that F(0) is terminal in . For any B € ob %, there is always at least 0: B — F(0), as £ is

f
additive. Given B—=F(0), we have
g
f—g= B%F(O)(—BF(O)
But F(0)® F(0) =~ F(0®0) with m; =~ F(m) and 7p = F( 2). As 0 is terminal in <7, we have
m =m: 000 —0. So f—g = (71 — 72 <g> — F(m2)) <f> =O<J;> =0.Sof=g
(]

SR

T —T2

F(0).

g
and F'(0) is terminal.
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C Abelian Categories

Definition: A category « is abelian when it is additive, has kernels and cokernels and every
mono is normal and every epi is normal.

This definition is self-dual.

Examples: AbGp, R-Mod, AbGpg,, of finite abelian groups. The functor category [€, <] if (€ is
small and) &7 is abelian. If ¥ is preadditive and &7 abelian, the full subcategory Add(¥, &) €
[€, /] of additive functors € — 7 is abelian (see Example Sheet 4).

The category of abelian compact Hausdorff groups Ab(Haus) is abelian.

Gp, AbGp, ; and Ab(Top) are not abelian.

Lemma: In an abelian category every mono is the kernel of its cokernel and every epi is the
cokernel of its kernel.

PROOF. Every mono is normal, and every normal mono is the kernel of its cokernel (Lemma 34).
|

Corollary: An abelian category is balanced.

PROOF. As any mono is normal, it is in particular regular monic. So if f is a mono and an
epi, it is a regular mono and an epi and so an iso (Proposition 8 in Section 2C). |

41 Lemma: (“Preadditive equalisers via kernels”)

f
Let of be preadditive. Then the pair A——=B has an equaliser iff the kernel of f — g exists, and
g

then they coincide.

PROOF. The equaliser of f and g and the kernel of f — g have the same universal property:
given h: C' — A, we have fh = gh < (f —g)h = 0. O

Notice that in general normal = regular = strong = mono. This lemma shows that in a
preadditive category, normal < regular; and in an abelian category we have normal < mono, so
all steps coincide.

Corollary: Any abelian category is finitely complete and cocomplete.

PROOF. As an abelian category &/ has biproducts and a zero object, it has all finite products.
So, using the “constructing limits” Theorem 7 from Section 2B, it suffices to show that &/ has

f
equalisers. Given A——= DB, the kernel of f — g exists as & has kernels, so o/ has equalisers. [
g

42 Proposition: (“abelian: zero kernel implies mono”)
Let f: A — B be a morphism in an abelian category o/ . The following are equivalent:
(i) f is a mono;
(ii) Ker f = 0;
(#ii) for all g: C — A in S/ with fg =0, we have g = 0.

PROOF. We have seen (i) = (ii), and (i) = (iii) is obvious. For (ii) = (iii), suppose fg = 0.
Then g factors through the kernel of f, which is 0, so ¢ = 0 by the definition of a zero morphism.
Finally we prove (iii) = (i): Suppose fg = fh. Then f(g —h) = fg — fh = 0, so by (iii)

g—h =0, giving g = h, and f is monic.
|
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43 Corollary:
In an abelian category, pullbacks reflect monos.

PRrOOF. Consider a pullback square and take kernels to the left.

0= KermHPjLB

RN

KeerAHf C

By “kernels and pullbacks” Lemma 36(ii), Kerm = Ker f, so Ker f = 0. So by the previous lemma,
f is also a mono. O

Dually, in an abelian category ¢ is epic < coker g = 0, and pushouts reflect epis.

Lemma: Given a square

i an abelian category, consider

f
A (—g) BoC (hsk) D.
Then

(i) (h,k) ( f ) = 0 iff the square commutes.

(i) <_fg> = ker(h, k) iff the square is a pullback.

(iii) (h,k) = coker ( fg) iff the square is a pushout.

PRrROOF. Exercise. O
Lemma: In an abelian category, pullbacks preserve epis.

A f B
Proor. Consider a pullback square gj/ J7h with h epic. Then (fg) = ker(h, k), but as

C ? D
h = (h,k) (}) is epic, (h, k) is epic, so it is the cokernel of its kernel. So the square is a pushout,
and pushouts reflect epis, so g is epic. (I

44 Proposition: (Image factorisation)
In an abelian category, any morphism factors as an epi followed by a mono.

PRrROOF. Let f: A— B be a morphism in . Let k: Ki——>A be the kernel of f and
p: A—=I be the cokernel of k. Then as fk = 0, we have

K> k

A d B
S
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We will show that ¢ is monic by showing that ¢x = 0 implies x = 0. So consider z: X — I with

1z = 0.
l \L
h
Lok
I

Kb—— A

|

We get a unique r such that r coker z = i. Now as both p and ¢ = coker x are epis, cp is an epi and
so the cokernel of some h. Then fh = iph = reph = 0, so h factors over the kernel of f by h = kl.
Finally ph = pkl = 0, so 3!s such that s(cp) = p. But as p is epic, this implies sc = 1, so ¢ is
(split) monic. Then cx = 0 implies x = 0, so the kernel of 7 is zero and 4 is a mono.
Thus f factors as an epi followed by a mono. |

B

f
—
A

7
p
c
ot
S

X =

<

Proposition: Image factorisation is unique (up to iso) and functorial.

PROOF. Suppose A S SN B with ¢ monic. Using “Kernels and pullbacks” Lemma 36(i)
P

on

KerpHAHp 1

l |

KeerA?B

we see that the first square is a pullback and therefore Kerp =~ Ker f. So if p is epic, it is the
cokernel of its kernel, i.e. p = coker(ker f). So the factorisation is unique.

A-Lp
Given al/ i/b , the kernel property of Ker f* and the cokernel property of p induce
A — B’
f
A—L+wi—"5B
| |
v
A/ 4/> II H B/
P i
making both squares commute. O

We saw that p = coker(ker f); dually i = ker(coker f).

Definition: Given f: A — B in an abelian category, we call ker(coker f) = i: J>—> B the
image of f. Write I = Imf, i =im f.

So we can view Im: Arr o/ — &/ as a functor, with natural transformations dom — Im and
Im — cod. (“Can view” means here that we’d have to actually choose a particular factorisation
out of the isomorphic possibilities.)

D Exact Sequences

Definition: A short exact sequence in an abelian category </ is

0—sA-tsp-tsc— 5y
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where f = ker g and g = coker f.

In general a sequence A$B$C’ is exact at B if im f = kerg. We say

frt1 fn
s A A, s s

is exact if it is exact at every (internal) A,,.

Lemma: Let A

f g . L
B C be the image factorisation of f and g. Then
R
f .

A—L 5B 5C is ezact iff 0 I>‘sp-"*

>J 0 @s a short exact sequence.
PRrROOF. Exercise. O

Examples:

6 0—>A—L 5B is exact (at A) iff f is monic.

o B—L>C——>0 is exact (at C) iff g is epic.

o 0 AfBg

oAfBg

o 0—>A—"5A G—)B%BHO is a short exact sequence.

C is exact iff f =kerg.

C 0 is exact iff g = coker f.
.. . t o
In fact, it is split: A?A (@) B?B

Definition: A short exact sequence 0 A ! B2

C 0 is split when g is split epic.

45 Lemma: (“abelian: split SES=biproduct”)

. . f g
In an abelian <, if O A BW

S

C 0 is a split short exact sequence then B =~ A@C'.

PRroOOF. Consider 15 —sg: B —> B. Then g(1p —sg) = g — gsg = 0, so 1 — sg factors over
the kernel of g. I.e. 3r: B — A such that fr = 15 — sg. We will prove that

g
A Hﬁ Bz—=C
satisfies the conditions of a biproduct.
We already know gf =0, gs = 1¢ and fr+sg=1p. Now frf =(1g—sg)f = f—sgf = f, so
as f is monic, rf = 14. Finally frs = (1p —sg)s=s—sgs=0,s0rs =0. Thus Bz A@C. O

Corollary: The notions of exact sequence and split short exact sequence in an abelian category
are self-dual. O

Definition: A functor F': &/ — % between abelian categories is exact if it preserves short exact
sequences.

F is left exact if it preserves exact sequences of the form 0 A B

F is right exact if it preserves exact sequences of the form A ! B—1sC 0.

Lemma: Any left (or right) exact functor is additive.
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PRroOF. Consider the (split) short exact sequence 0—>A—->A@ B——>B—>0. Then

the sequence OHFA@F(A @B)MFB is exact, but as F'(m2) is split epic, we in fact

get a split SES, i.e. F(A®B) ~x FA® FB. O

Lemma: (i) F is left exact < F is additive and preserves kernels < F preserves finite
limits.
(ii) F is right exact < F is additive and preserves cokernels < F preserves finite colimits.
(iti) F is exact < F is additive and perserves kernels and cokernels < F' preserves finite
limits and colimits.

Proor. Use “additive functors preserve biproduct” Proposition 40, “preadditive equalisers
via kernels” Lemma 41 and the “constructing limits” Theorem 7 (Section 2B). g

Corollary: A left exact functor between abelian categories is exact iff it preserves epimorphisms.

PRroOOF. Exercise. O

E Diagram Lemmas

46 Theorem: (Short Five Lemma)
Let o be abelian. Consider a commutative diagram

f g

0 K> A > B 0
0 K'>——> A —> DB 0
g

where both rows are exact, and k and b are isos. Then a is also an iso.

PROOF. By “Kernels and pullbacks” Lemma 36(i), we see that the first square is a pullback.
As, in an abelian category, pullbacks reflect monos (Corollary 43), a is a mono.
Dually a is an epi, so a is an iso. O

47 Corollary: (Five Lemma)
In an abelian category <7, consider the commutative diagram

A B C D E
ool 4 k)
A/ BI CI D/ El

with exact rows, a epic, b and d isos and e monic. Then c is an iso.

PROOF. We write out the image factorisation of all horizontal morphisms:

A > > B > o 1> C > 31> D > [y > E

b e

A > 17> B’ > 151> ' > Ih > D’ = E'

Looking at the first square, we see that [; — I] has to be an epi, as it is the second part of a
composite which is an epi. Similarly, looking at the second square, we see that it must be a mono.
So we find that I; — I} and Iy — I} are isos are they are epis and monos, and so Iy, — I} and
Is — I} are isos as they are induced morphisms between cokernels resp. kernels of isomorphic
morphisms. So we can use the Short Five Lemma to see that ¢ is an iso. |
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Corollary: In an abelian category, given a commutative diagram

f g

0 K A B 0
| el
0 K’ —> A’ — B’
f g

where both rows are exact, k is an iso iff (2) is a pullback.

PROOF. Proof not examinable as bookwork. It is on the example sheet however, so I would
expect you to have looked at it in the same way as for other example sheet questions.
We've already seen <. For =, form the pullback of ¢’ and b and consider

0— K—001 A—2 op—s0
\K \P = \B
= er o >
S V=
0— K'—— A———PB

We know that Ker 7, — K’ is an iso by “<”, and the front triangle commutes as f’ is monic. So
K — Ker s is also an iso. Now 75 is an epi as g is, so we can use the Short Five Lemma to see
that A — P is an iso, i.e. (2) is a pullback. O

Remark: We could have used this together with the fact that pullbacks reflect monos in the image
factorsation proof to show that i is monic.

48 Lemma: (Pullback cancellation (on the left))
In an abelian category, consider

A-Tlspoc

aHn i ® |
A'?B’TC’

where the rectangle (1,2) and the square (1) are pullbacks and b is an epi. Then (2) is also a
pullback.

PROOF. Proof not examinable as bookwork. It is on the example sheet however, so I would
expect you to have looked at it in the same way as for other example sheet questions.
Consider the kernels of a, b and c:

KeIr a ! KGI:r b g KT c
A—T sp—2 o0
| b
A/ BI Cfl

Then by “Kernels and pullbacks” Lemma 36(i), f and gf are isomorphisms, as (1) and (1,2) are
pullbacks. So g is also an isomorphism, so by the previous result, (2) is a pullback (this needs b to
be epic). O

From here onwards everything is extra material which was not lectured. It will not be on the
exams.
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49 Theorem: (Nine Lemma)

Consider

0 0 0

0 A B C 0

(1) o
0 A B’ C’ 0
v (2)

0 A// B/l C/I O

0 0 0

where all rows are exact and b'b = 0. Then if any two columns are exact, the third column is also
exact. In that case (1) is a pullback and (2) is a pushout.

ProOF. Not in this course.
50 Theorem: (Snake Lemma)

A commutative diagram with exact rows as the solid one below induces a siz-term exact sequence
between the kernels and cokernels as indicated.

Kerq > Kerb >Kere o
v v v h
A—Ll sp—* 0 0 5
0 A’ ; B’ ; o4
: f g
U v v v
"""""""""""" > Coker a > Coker b > Coker c

PROOF. (non-examinable) Consider the kernels and cokernels with the induced maps between
them. For shortness of notation we will write Kera = K;, Kerb = K3 and Kerc = K3, similarly
we will call the cokernels @);.

Y
k,‘l kg k}g
f g
A B C 0
a b c
0 A —> B ——> '
f g
q1 q2 q3
\4 N4 N4

Ql?Qz?Q:s
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We give a proof which maximises the use of the Duality Principle (borrowed from Peter Johnstone).
1. Construction of § Form the diagram

E—s>p—Lo K,
Jf Iks
B——>C
b

A/DfHB/

flli T
v

Qo> T =D

where the upper square is a pullback, the lower square is a pushout, e = kerp and d = cokert.
Remember that pullbacks and pushout preserve both monos and epis (as we are in an abelian
category), so p and r are epis and ¢ and ¢ are monos. So as any epi is the cokernel of its kernel,
we have p = cokere and dually ¢ = kerd. To construct §: K3 — (', it is enough to factor the
composite 7bg through p and through t. For this we just have to show that rbge = 0 and that
drbq = 0, which are dual to each other, so showing the first is enough.

To prove the first, note that gge = kspe = 0, so ge factors through ker g = im f. So if we form
the pullback

L—>E

. ﬁ Jo

A?B

then its top edge [ is epic. This is because it is the same as the pullback:

l
L—>F
-

But rbgel = rbfm = rf'am = tgram = 0 (as ¢; is the cokernel of a),

L—4sp—LtrK,

Y

m q Ikg
a b
Al > - > B/
q1 T
v v

Qo> T =D

so we may deduce rbge = 0 as required. So we get §: K3 — @1 such that tép = rbq.

Exactness at Ky We have ksgf = gkof = gfk; = 0 and ks is monic, so gf = 0. Let
e’ B/ — K5 be the kernel of §; then the composite ko€’ factors through kerg = im f, so as
before we get an epi I'’: L’ — E’ and a morphism m’: L' — A such that fm’ = koe’l'. Now
flam’ = bfm’ = bkoe’'l’ = 0 and f’ is monic, so am’ = 0, i.e. m’ factors through ker a = k1, say by
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s: L' — Ky. Now kyfs = fkis = fm’ = k€'l and k; is monic, so fs = €/l’, i.e. s is a morphism
e'l! — f in &/ /K,. But this implies that im f > ime'l’ = ¢/ = kerg in Sub(K3) (by naturality of
image factorisation).

L’—DKergHKg

T

K >Tm f >

imT
The reverse inequality follows from Gf = 0, so we get exactness at Ks.

Exactness at K3 The pair (ko,q) factors through the pullback P, say by u: Ky — P. So to
prove that g = 0, it suffices (since ¢ is monic) to prove that tdpu = 0, i.e. that rbqu = 0 (since 0
was induced by tdp = rbg). But this composite equals rbks, which is of course 0.

Now let h: K3 — H be the cokernel of g, and form the pushout (the right-hand square)

Ko—L>Ks—"on
kI % Im
B——>C —O’; M
where m is monic as k3 is. Then ogks = oksg = mhg = 0, so og factors through coker ko = coim b.

So (as before with 1) if we form another pushout (the right-hand square)

A$B$M

|
A'?B’JN

o

then m’ is monic. Then o' f’a = o'bf = m'ogf = 0, so o' f’ factors through cokera = ¢;, say by
n: Q1 —> N. Then the pair (0’,n) factors through the pushout 7', say by z: T — N.

AI f >BI

Then
nép = xtép = xrbg = 0'bqg = m'ogq = m'oksp = m'mhp
and as p is epic, we have né = m’mh, i.e. n is a morphism 6 — m’mh in the coslice category

K3\, so coim ¢ = coimm/mh = h = coker g in the preorder of quotients of K.

K3 —> Coim § b——> @1

l;

K; HCokergHN

mm
The reverse inequality follows from dg = 0. So we have exactness at Kj.
Exactness at ()1 and Q2 These proofs are dual to those at K3 and K respectively. O

Notice that when f is a mono, then so is the induced Kera — Ker b, and when ¢’ is an epi,
so is Coker b — Coker c.
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Fact: Every small abelian category has a full, faithful and exact embedding into a category
R-Mod of modules over a ring R. This allows us to prove results about exact sequences, monos,
epis, images etc. using elements. But the result is not easy!

(This may not be used in exams!)
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