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Preamble

The Notes

These notes are not verbatim what I will write on the blackboards. They will have more detail
here and there, and more complete sentences. You can read ahead of lectures, you can use them
for revision, you can use them to look up a little detail which you can’t figure out from the more
compressed notes from the actual lectures, and probably in many more ways. It is up to you to
find out how they are most useful. If you don’t like taking notes at all in lectures, use these. If you
(like me) find that taking down notes in lectures is actually the best way to learn something, set
these notes aside for a while and use them just to fill in gaps later. If you try to read these notes
while I’m lecturing the same material, you may get confused and probably won’t hear what I say.

There are probably still some errors and typos in the notes, please do let me know (jg352) if
you find any, even if they look trivial. I would like to thank Zhen Lin Low, Tamar von Glehn and
Achilleas Kryfties for helping me proofread the notes.

The Exam

Past papers will be a good guide to questions. The last two years were set by me; however
2012 was a bit too easy. The structure will be a choice of 5 questions out of 8 possibilities. There
will be a mixture of some bookwork and some problem type questions. Examinable material covers
not just the lectured material but also all material from the example sheets, and anything in the
course which is left as an exercise.

Books

Here is a list of books which may be useful:

(1) Mac Lane, S. Categories for the Working Mathematician, Springer 1971 (second edition
1998). Still the best one-volume book on the subject, written by one of its founders.

(2) Awodey, S. Category Theory, Oxford U.P. 2006. A new treatment very much in the spirit
of Mac Lane’s classic, but rather more gently paced.

(3) Borceux, F. Handbook of Categorical Algebra, Cambridge U.P. 1994. Three volumes
which together provide the best modern account of everything an educated mathematician
should know about categories: volume 1 covers most but not all of the Part III course.

(4) McLarty, C. Elementary Categories, Elementary Toposes (chapters 1–12 only), Oxford
U.P. 1992. A very gently-paced introduction to categorical ideas, written by a philosopher
for those with little mathematical background.

To get into the subject, people have told me that the Awodey book is very good. Mac Lane is
very dense but has a lot of material and examples in it (if you can find them), and Borceux suits
my personal style the best, but there are some typos in it.

Example Sheets

There will be four example sheets. The questions vary in difficulty and length. You can find
them on my website https://www.dpmms.cam.ac.uk/~jg352/teaching. Doing example sheet
questions is the best way to understand the material. However, if you think the sheets are too
long, just pick some of the questions. If you think the sheets are too short, find your own additional
questions in books. You are responsible for your own learning, and these example sheets are just
what I offer you to help your learning.
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2 PREAMBLE

There will be examples classes, each with roughly 12 students in it. Arrangements will be
advertised in lectures and on my website https://www.dpmms.cam.ac.uk/~jg352/teaching.html

The Course

What is Category Theory?

� It’s one level more abstraction than other pure maths.
One could call it “Mathematics about Mathematics”. It is however still Mathematics!

In pure maths, we for example abstract from symmetries of polyhedra to group theory
and integers to ring theory, and in Category Theory we abstract from groups, rings,
modules, ... to categories.

� It’s a language for mathematicians.
Notation is important! For example d

dx suggests the right properties of differentiation.
Category Theory is a subject-agnostic abstract notation system for pure mathematics.

� It’s a way of thinking.
We study structure, find common patterns, and try to understand how and why things

work. We want to understand things so well that we can make them “look obvious”. In
this sense a lot of work goes into definitions!

Category Theory is not only interested in one particular mathematical object, but in how
objects of a similar kind interact with each other, in global structures and connections. So for ex-
ample we study morphisms of a similar kind such as sets or groups or modules, but with interaction
between them, i.e. with morphisms of an appropriate kind as well.

To get a flavour of the “wider world” of Category Theory, you can go to the Category Theory
Seminars, on Tuesdays, 2:15pm, in MR5. You may not understand everything or even anything,
but you will still get an idea about what category theorists do. There is also the Junior Seminar
(run by PhD students), which is on Thursdays 2pm. This should be more accessible to Part III
students, and our PhD students are a very friendly and lively lot who will be happy to answer
questions.

https://www.dpmms.cam.ac.uk/~jg352/teaching.html


CHAPTER 1

Categories, Functors and Natural Transformations

A Categories

Definition: A category C consists of:

� a collection ob C of objects (denoted A,B,C, . . .)
� for each pair A,B P ob C , a collection C pA,Bq � HomC pA,Bq of morphisms

(denoted f : A ÝÑ B, g, h,...)

equipped with

� for each A P ob C , an identity morphism idA � 1A P C pA,Aq.
� for each A,B,C P ob C , a composition law:

C pA,Bq � C pB,Cq ÝÑ C pA,Cq

pf, gq ÞÝÑ g�f � gf,

satisfying

� identity axioms: if f : A ÝÑ B, then 1B�f � f � f�1A.
� associativity: if f : A ÝÑ B, g : B ÝÑ C, h : C ÝÑ D then

h� pg�fq � ph�gq �f

Definition: A category C is said to be small if ob C and all of the C pA,Bq are sets, and locally
small if each C pA,Bq is a set (in which case we also call them “hom sets”).

Remarks: � If f : A ÝÑ B, we call A the domain (or source) of f and B the codomain
(or target) of f .

� Morphisms are also referred to as maps or arrows.
� Most of the time, we won’t worry too much about the intricacies of set theory.
� We could define categories just considering morphisms (with the objects defined by the

identities), but in most examples the objects “come first”.
� We may write mor C for the collection of all the morphisms in C , and dom, cod: mor C ÝÑ ob C

for the domain and codomain operations (see Example Sheet 1).

Definition: We say a square such as

A
f ,2

h

��

B

g

��
C

k
,2 D

is commutative (or commutes) when the composites g�f and k�h give the same morphism
A ÝÑ D.

This terminology also applies to other shapes of diagrams. To indicate that a diagram com-
mutes, we often write a little square into it, or use ÷.

Examples: a) Set of sets and functions.
b) Categories of algebraic structures such as:

� Gp: groups and group homomorphisms,

3



4 1. CATEGORIES, FUNCTORS AND NATURAL TRANSFORMATIONS

� AbGp: abelian groups and group homomorphisms,
� Rng: rings and ring homomorphisms,
� R-Mod: R-modules and R-module homomorphisms for a given ring R.

c) Categories of topological structures such as:
� Top: topological spaces and continuous maps,
� Haus: Hausdorff spaces and continuous maps,
� Met: metric spaces and uniformly continuous maps (or Lipschitz maps, for a different

category),
� Htpy: topological spaces and homotopy classes of continuous maps.

Note that the only maps we really need in a category (so as to have a category) are the
identities.

Definition: A category with only identities is called discrete.

Examples: d) Mathematical structures viewed as categories:
� Sets: Any set can be viewed as a discrete category with the elements as objects.
� Posets: A poset pP,¤q can be regarded as a category with the elements of P as

objects, and with Hompa, bq being a singleton if a ¤ b and empty otherwise. Then
reflexivity implies the existence of identity morphisms, and transitivity gives us com-
position.
Any category in which there is at most one morphism between any two objects is a
preorder. Note that a preorder doesn’t need to satisfy antisymmetry.

� Monoids1: A locally small category with just one object is a monoid. The morphisms
are the elements of the monoid, composition of morphisms is multiplication in the
monoid and the identity morphism is the unit of multiplication.

� Groups: A group can be considered as a category with one object, just as for monoids.
The difference is that every morphism now has a (two-sided) inverse.

Definition: A morphism f : A ÝÑ B in a category C is called an isomorphism if it has a two-sided
inverse, i.e. a g : B ÝÑ A satisfying gf � 1A and fg � 1B . A category in which every morphism
is an isomorphism is called a groupoid.

This means that a group is a groupoid with only one object. Note that in a poset, only the
identities are isomorphisms.

Examples: � Iso C : Any category gives rise to a groupoid: just take all objects and all
isomorphisms.

� Fundamental groupoid: Given a space X, the fundamental groupoid πpXq has objects
the points of X, and morphisms x ÝÑ y are homotopy classes of continuous paths
u : r0, 1s ÝÑ X from x to y. Composition of u : x ÝÑ y with v : y ÝÑ z is defined as

vuptq �

#
up2tq p0 ¤ t ¤ 1

2 q

vp2t� 1q p 1
2 ¤ t ¤ 1q

The identity morphism is a constant path at x; inverses are paths traversed backwards.

1 Examples: (“New from old”)

a) Given any category C , the opposite category C op has the same objects and morphisms
as C , but the direction of the morphisms is reversed: C oppA,Bq � C pB,Aq. This gives us
a “duality principle”: if some statement P holds in any category, so does the statement
P� obtained by “reversing all arrows in P”.

1A monoid is like a group, but without inverses.
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b) Subcategories: D is a subcategory of C if ob D � ob C and for each A,B P ob D ,
DpA,Bq � C pA,Bq. E.g. AbGp ãÑ Gp.

c) Product categories: Given categories C and D , the product C �D has objects pA,Bq
with A P ob C and B P ob D , and morphisms pf, gq : pA,Bq ÝÑ pC,Dq with f : A ÝÑ C
in C and g : B ÝÑ D in D .

d) Slice categories: Given a category C and an object B of C , the slice category C {B has
as objects those morphisms in C with codomain B, and “morphisms are commutative
triangles”:

h :

�
���
A

f

��
B

�
��
ÝÑ

�
���
C

g

��
B

�
��
 satisfies

A
h ,2

f �%@@@@@@@
l

C

g
y�~~~~~~~

B

Dually we have the coslice category BzC � pC op{Bq
op

with

B
f

y�~~~~~~~
g

�%AAAAAAA

A
h

,2 C.

For example:
� Set{B can be regarded as the category of “B-indexed families of sets”: An object�
� A

f��
B

�

may be identified with the family pf�1pbq | b P Bq.

� 1zSet (with 1 � t�u a one-point set) is the category of pointed sets: objects are
pairs pA, aq of sets with a distinguished element a P A, and morphisms f : pA, aq ÝÑ pB, bq
must preserve this: fpaq � b.

e) Arrow categories: Given a category C , the arrow category Arr C has as objects the
morphisms of C , and as morphisms commutative squares

A
f ,2

u

��

B

v

��
C g

,2 D.

f) Quotient categories: Given an equivalence relation � on each collection of morphisms
C pA,Bq of a category C satisfying

f � g ñ fh � gh and kf � kg

whenever these composites are defined, then we can form the quotient category C { �.

2 Examples: (“Unusual maps”)
Here are some categories where the morphisms are not just functions.

� Matrices: Given a field k, let Matk be the category with objects the natural numbers
and Matkpn,mq being m � n matrices with entries in k. Then composition is matrix
multiplication.

� Relations: Rel is the category which has sets as objects, and morphisms A ÝÑ B are
triples pA,R,Bq where R � A � B is an arbitrary subset (a relation on A and B).
Composition of pA,R,Bq and pB,S,Cq is pA,S �R,Cq with

S �R � tpa, cq | Db P B s.t. pa, bq P R and pb, cq P Su.

� Partial functions: Part has sets as objects and partial functions as morphisms. You can
view a partial function as a relation R � A� B satisfying ppa, bq P R and pa, b1q P Rq ñ
b � b1.
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� Formal proofs: We can form a category Proofs with objects being logical statements (in
some language) and morphisms being formal proofs of one statement from another (in a
given logical system), modulo a suitable notion of equivalence.

3 Examples: (Finite categories)

a) A discrete category with 2 (or n) objects: j j1

b) A category with only one non-identity morphism: j ,2j1

c) A category with two non-identity morphisms: j ,2,2j1

d)

� ,2

��

�

�

d’)

�

��
� ,2 �

etc.

B Functors

Definition: Let C and D be categories. A functor F : C ÝÑ D consists of:

� a mapping A ÞÝÑ FA : ob C ÝÑ ob D and
� mappings f ÞÝÑ Ff : C pA,Bq ÝÑ DpFA,FBq

such that

� F1A � 1FA and
� F pgfq � Fg�Ff (whenever gf is defined).

Examples: a) Any category C has an identity functor. We can also compose functors.
This allows us to form the category Cat of small categories and functors between them.

b) If D is a subcategory of C , there is an inclusion functor D ãÑ C . If A �B is a product
category, there are projection functors π1 : A �B ÝÑ A and π2 : A �B ÝÑ B.

c) Forgetful functors: We can define a functor U : Gp ÝÑ Set which sends a group to its
underlying set and a homomorphism to its underlying function: it “forgets” the group
structure. Similarly, there are forgetful functors Rng ÝÑ Set, R-Mod ÝÑ Set, Top ÝÑ
Set, ... and Rng ÝÑ Gp forgetting the multiplication.

d) Free functors: For any set A, we can form the free group FA generated by A. Any
function f : A ÝÑ B induces a unique group homomorphism f : FA ÝÑ FB which sends
any a P A to fpaq P B. Given also g : B ÝÑ C, we see that gf � g�f , as they agree on
the generators of FA. This gives a functor F : Set ÝÑ Gp.

e) There is a functor Set ÝÑ Top sending a set X to the discrete space on X.
f) There is a functor ab: Gp ÝÑ AbGp sending G to G{rG,Gs, the abelianisation functor.
g) Powerset functor: Define P : Set ÝÑ Set by setting PA to be the set of all subsets

of A, and if f : A ÝÑ B, then pPfqpA1q � tb P B | Da P A1 s.t. b � fpaqu � fpA1q, the
image of A1 under f .

We can also make the powerset operation into a functor P� : Set ÝÑ Setop (or
Setop ÝÑ Set) by setting pP�fqpB1q � f�1pBq. Check that P�pfgq � P�pgq�P�pfq.

Definition: A contravariant functor from C to D is a functor C op ÝÑ D (or C ÝÑ Dop). A
functor which does not reverse the direction of arrows is also called covariant.

Examples: h) Duals: Given a field k, we can form a functor p�q� : k-Mod ÝÑ k-Modop

by sending a vectorspace V to its dual vectorspace V � and a linear map f : V ÝÑW to
f� : W� ÝÑ V �, which sends a linear functional φ PW� to φf P V �.

Similarly, there is a functor p�q� : Rel ÝÑ Relop defined on objects by A� � A and
on morphisms by R� � tpb, aq | pa, bq P Ru.

i) We can regard the operation C ÞÝÑ C op as a functor Cat ÝÑ Cat. If F is a functor
F : C ÝÑ D , then F op denotes the same data regarded as a functor C op ÝÑ Dop. Note
that this is a covariant functor!

j) A functor between monoids is a monoid homomorphism.
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k) A functor between partially orderd sets is an order-preserving map.
l) Hom-functor: Given a locally small category C , there is, for every object A of C, a

hom-functor C pA,�q : C ÝÑ Set:
C pA,�q applied to an object B gives the set C pA,Bq. C pA,�q applied to g : C ÝÑ D

gives “post-composition with g”:

C pA, gq : C pA,Cq ÝÑ C pA,Dq

A
f ,2C ÞÝÑ A

f ,2C
g ,2D

Simiarly, we have a contravariant hom-functor C p�, Aq : C op ÝÑ Set.
m) Let G be a group, considered as a category with one object �. What is a functor G ÝÑ

Set? We have a set A � F p�q and for each g P G , a function g � Fg : A ÝÑ A satisfying

1 � 1A and gh � gh. This forces g�1 � pgq�1, so all g are bijections. So F is a
permutation representation (or action) of G on the set A. Similarly, for a given field
k, functors G ÝÑ k-Mod are the same thing as k-linear representations of G .

n) The fundamental group of a space defines a functor

π1 : p1zTopq ÝÑ Gp

(in fact p1zTopq{� ÝÑ Gp where � is base-point preserving homotopy).
The homology groups define functors

Hn : Top{� ÝÑ Gp

(in fact Hn : Top{� ÝÑ AbGp).

Remark: Functors preserve commutative diagrams, so also properties defined by commutative
diagrams, such as isomorphisms.

C Natural Transformations

Natural transformations give a way of “moving between the images of two functors”.

Definition: Let C ,D be categories and F,G : C ÝÑ D two functors. A natural transformation
α from F toG is a collection of morphisms in D tαA : FA ÝÑ GA | A P ob C u satisfying pGfq�αA �
αB�pFfq for all f : A ÝÑ B in C .

FA
αA ,2

Ff

��
l

GA

Gf

��
FB αB

,2 GB

(Naturality condition)

If β : G ÝÑ H is another natural transformation, then the composite βα (given by pβαqA �
βAαA) is also natural2. For every functor F , there is an identity natural transformation 1F : F ÝÑ F .
So, given two categories C and D , we have a functor category rC ,Ds: objects are functors
F : C ÝÑ D , morphisms are natural transformations between them. Note that rC ,DspF,Gq �
NatpF,Gq is the class of natural transformations from F to G.

If each αA is an isomorphism in D , then we have another natural transformation G ÝÑ F
given by tα�1

A : GA ÝÑ FAu, since

pFfqα�1
A � pα�1

B qαBpFfqα
�1
1 � α�1

B pGfqαApα
�1
A q � α�1

B pGfq.

This makes α an isomorphism in rC ,Ds, and we call it a natural isomorphism.

2This is called “vertical composition”. For another way of composing natural transformations, see Example
Sheet 1.
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Examples: a) For any vectorspace V we have a “natural” mapping αV : V ÝÑ V �� sending
v P V to pφ ÞÝÑ φpvqq. This is the V -component of a natural transformation 1k-Mod ÝÑ
p�q��, i.e. for any linear map f : V ÝÑW , the diagram

V
αV ,2

f

��

V ��

f��

��
W αW

,2 W��

commutes.
b) Recall the covariant powerset-functor P : Set ÝÑ Set. For each setA, let t uA : A ÝÑ PA

be the function a ÞÝÑ tau. Then t u is a natural transformation 1Set ÝÑ P.
c) Let G,H be groups and f, g : G ÝÑ H group homomorphisms. A natural transformation

α : f ÝÑ g consists of an element c � α� P H such that, for any x P G, we have

�
c ,2

fpxq

��
l

�

gpxq

��
�

c
,2 �

i.e. gpxq � cfpxqc�1, so α is a conjugacy between f and g.
d) The Hurewicz homomorphism

h : πnpX,xq ÝÑ HnpXq

is a natural transformation πn ÝÑ IHnU , where U : p1zTopq{ �ÝÑ Top{ � forgets the
basepoint and I : AbGp ÝÑ Gp is the inclusion.

D Equivalences

Definition: Let F : C ÝÑ D be a functor.

a) We say F is faithful if, for each A
f ,2
g

,2B in C , the equation Ff � Fg implies f � g.

(i.e. “F”: C pA,Bq ÝÑ DpFA,FBq is injective.)
b) We say F is full if, for all objects A,B of C and morphisms h : FA ÝÑ FB in D , there

exists f : A ÝÑ B with Ff � h. (C pA,Bq ÝÑ DpFA,FBq is surjective.)
c) We say F is essentially surjective on objects if for every B P ob D , there exists

A P ob C with FA � B.
d) We say a subcategory C 1 of C is full if the inclusion functor C 1 ÝÑ C is a full functor

(i.e. C 1pA,Bq � C pA,Bq for all A,B P C 1).

For example, Gp is a full subcategory of the category Mon of monoids, but Mon is not a full
subcategory of semigroups3.

Definition: Let C and D be categories. An equivalence between C and D is a pair of functors
F : C ÝÑ D and G : D ÝÑ C together with a pair of natural isomorphisms α : 1C ÝÑ GF and
β : 1D ÝÑ FG. We say C and D are equivalent, write C � D , if there is an equivalence between
them.

4 Lemma: (“equivalence ô f.f.+e.s.”)
Let F : C ÝÑ D be a functor.

i) If F is part of an equivalence pF,G, α, βq, then F is full, faithful and essentially surjective
on objects.

ii) The converse holds if we assume a ‘sufficiently big’ axiom of choice.

3Semigroups are monoids but not necessarily with a unit. Semigroup homomorphisms need not preserve the 1
in a monoid.



D EQUIVALENCES 9

Proof. i) F faithful: For any f : A ÝÑ B in C , we can recover f from Ff :

A
f ,2

� αA

��

B

� αB

��
GFA

GFf
,2 GFB

So f � α�1
B

�GFf�αA. So Ff � Fg implies f � g. (Of course, this also shows that G is
faithful.)

F full: Given h : FA ÝÑ FB, define f � α�1
B GhαA:

A
f ,2

� αA

��

B

� αB

��
GFA

Gh
,2 GFB

Then f also equals α�1
B

�pGFfq�αA as above, so GFf � Gh. But G is faithful by the
above, so h � Ff as required.

F essentially surjective: Given B P ob D , we have an iso βB : B ÝÑ FGB.
ii) Suppose that F is full, faithful an essentially surjective. We construct a functor G and

a natural iso β : 1D ÝÑ FG: For each C P ob D , choose a pair pGC, βCq such that βC
is an iso C ÝÑ FGC in D . (We can do this because F is essentially surjective.) Given
h : C ÝÑ D, the composite

C
h ,2 D

� βD

��
FGC

�β�1
C

LR

F pGhq
,2 FGD

can be written as F pGhq for a unique Gh : GC ÝÑ GD in C , as F is full and faithful.
We check whether G really is a functor: given h1 : D ÝÑ E, both Gph1hq and Gh1�Gh are
the unique f that make

C
h1h ,2

� βC

��

E

� βE

��
FGC

Ff
,2 FGE

commute, so they must be equal.
By construction, β is a natural transformation 1D ÝÑ FG. We obtain αA from the

component βFA : FA ÝÑ FGFA: as F is full and faithful, βFA � F pαAq for a unique
αA : A ÝÑ GFA. The facts that αA is an isomorphism and that α is natural follow from
F being full and faithful (Exercise).

�

Examples: a) The category Set{B is equivalent to SetB (B-indexed families of sets). In one
direction, the equivalence sends f : A ÝÑ B to pf�1pbq | b P Bq (c.f. Examples 1 “New
from Old”) and a morphism

A
h ,2

f �%@@@@@@@ A1

f 1y�}}}}}}}

B

to the family ph|f�1pbq | b P Bq. In the other direction, we send pAb | b P Bq to the disjoint
union

²
bPB Ab �

�
bPBtAb � tbuu equipped with its projection to B.
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b) For a field k, the categories k-Modf.d. and k-Modop
f.d. (of finite dimensional vectorspaces

and its opposite) are equivalent. The functors in both directions are V ÞÝÑ V �, and the
isomorphism V ÝÑ V �� is that of Example a) in Natural Transformations (1C).

c) The category Matk from the “unusual maps” Example 2 is equivalent to k-Modf.d.: The
functor F : Matk ÝÑ k-Modf.d. sends n to kn and a matrix M to the linear map it presents
with respect to the standard bases. To define a functorG in the other direction, we need to
choose a basis for each finite dimensional vectorspace: GV � dimV , and Gpf : V ÝÑW q
is the matrix representing f wrt. our chosen bases. GF is the identity functor (if we choose
the standard basis), and the chosen bases give us a natural isomorphism 1 ÝÑ FG.

E Representable Functors

Recall the hom-functors C pA,�q : C ÝÑ Set. We can put all these together into a functor:

Definition: Let C be a locally small category. We define a functor Y : C op ÝÑ rC ,Sets, called the
Yoneda embedding, by setting Y A � C pA,�q, and Y pf : A ÝÑ Bq is the natural transformation

with components pY fqC : C pB,Cq
��f ,2C pA,Cq .4

Remark: We could also define a similar functor C ÝÑ rC op,Sets.

We should check that Y f is really a natural transformation and Y is really a functor. Given
f : A ÝÑ B and g : C ÝÑ D, we need

C pB,Cq
��f

pY fqC

,2

C pB,gq g��

��

C pA,Cq

C pA,gq g��

��
C pB,Dq

��f

pY fqD

,2 C pA,Dq

to commute. A morphism h : B ÝÑ C is sent to gphfq and pghqf respectively, so by associativity
of composition, Y f really is a natural transformation. Similarly associativity of composition also
implies that Y is a functor. (Check it!)

What is so special about the hom-functors C pA,�q?
Given a natural transformation α : C pA,�q ÝÑ F , let us look at the naturality square

C pA,Aq
αA ,2

f��

��

FA

Ff

��
C pA,Bq

αB
,2 FB

for some f : A ÝÑ B. We see that

αBpf�1Aq � FfpαAp1Aqq,

i.e. αBpfq is completely determined by αAp1Aq, so α itself is completely determined by the element
αAp1Aq P FA.5

5 Theorem: (Yoneda Lemma)
Let C be a locally small category, A P ob C and F : C ÝÑ Set a functor. Then there is a bijection

θ : NatpC pA,�q, F q ÝÑ FA

between natural transformations C pA,�q ÝÑ F and elements of FA. Moreover, this bijection is
natural in A and F .

4Y is contravariant!
5Think of a group homomorphism Z ÝÑ G being determined by where 1 goes.
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Proof. Given a natural transformation α : C pA,�q ÝÑ F , we set θpαq � αAp1Aq.
Given an element x P FA, we define a natural transformation ψpxq : C pA,�q ÝÑ F by

ψpxqBpfq � Ffpxq, i.e.

ψpxqB : C pA,Bq ÝÑ FB

f ÞÝÑ Ffpxq

We check that ψpxq really is a natural transformation:
Given g : B ÝÑ C in C , consider

C pA,Bq
ψpxqB ,2

g�� C pA,gq

��

FB

Fg

��
C pA,Cq

ψpxqC

,2 FC

Chasing f P C pA,Bq around the diagram, we see that we need FgpFfpxqq � F pgfqpxq, which is
true as F is a functor.

We now show that θ and ψ are inverse to each other:

� ψpθpαqqB � ψpαAp1AqqB : C pA,Bq ÝÑ FB sends f : A ÝÑ B to FfpαAp1Aqq � αBpf�1Aq �
αBpfq. So ψpθpαqq � α.

� θpψpxqq � ψpxqAp1Aq � F1Apxq � 1FApxq � x.

We now fix F and show that θ is natural in A:
Given f : A ÝÑ B, we have a square

NatpC pA,�q, F q
θA ,2

��Y pfq

��

FA

Ff

��
NatpC pB,�q, F q

θB

,2 FB

A natural transformation α P NatpC pA,�q, F q is mapped to θBpα�Y pfqq � αB�Y pfqBp1Bq, going
down and then across. Now Y pfqB � ��f , so we get αBY pfqBp1Bq � αBpfq.

C pB,Bq
��f ,2 C pA,Bq

αB ,2 FB

1B
� ,2 f � ,2 αBpfq

On the other hand, Ff�θApαq � Ff�αAp1Aq � αBpfq
6 So the square above commutes, and θ is

natural in A.
Exercise: Check that θ is natural in F for fixed A. �

Remark: This means that θ is a natural transformation NatpC p � ,�q, F q ÝÑ F for fixed F and
also NatpC pA,�q, � q ÝÑ evA for fixed A, where evA means evaluation at A. These can also be
combined into a more complicated natural transformation.

Definition: A functor F : C ÝÑ Set is called representable if it is isomorphic to C pA,�q for
some A P ob C . A representation of F is a pair pA, xq, where A P ob C , x P FA and ψpxq is a
natural isomorphism C pA,�q ÝÑ F q. We also call x a universal element of F .

Corollary: The Yoneda embedding is full and faithful.

Proof. Putting F � C pB,�q in the Yoneda Lemma gives us a bijection between morphisms
C pA,�q ÝÑ C pB,�q in rC ,Sets and elements in C pB,Aq, i.e. morphisms B ÝÑ A in C . The
inverse is exactly the action of the Yoneda embedding on morphisms. (Check this!) This shows
that the Yoneda embedding is full and faithful. �

6Use the square before the statement of the Yoneda Lemma.
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6 Corollary: (“Representations are unique up to unique isomorphism.”)
If pA, xq and pB, yq are both representations of F : C ÝÑ Set, then there is a unique isomorphism
f : A ÝÑ B in C with Ffpxq � y.

Proof. We have a composite isomorphism

C pB,�q
ψpyq ,2F

ψpxq�1

,2C pA,�q.

As the Yoneda embedding is full and faithful, this is of the form Y pfq for a unique isomorphism
f : A ÝÑ B in C (c.f. Example Sheet 1 Question 1(e)). So Y pfq � ψpxq�1ψpyq, or ψpxqY pfq �
ψpyq. Via the bijection in the Yoneda Lemma this is equivalent to Ffpxq � y. �

Examples: a) The forgetful functor Gp ÝÑ Set is representable by pZ, 1q, since homomor-
phisms f : Z ÝÑ G correspond bijectively to elements fp1q of the underlying set of G.
Similarly, Rng ÝÑ Set is representable by pZrxs, xq, etc.

b) The covariant powerset functor P : Set ÝÑ Set isn’t representable. (Exercise: prove
this!) But P� : Setop ÝÑ Set is represented by p2, t1uq, where 2 � t0, 1u, since subsets
A1 � A correspond bijectively to (indicator) functions χ1A : A ÝÑ 2.

c) The dual-space functor p q� : k-Modop ÝÑ k-Mod, when composed with the forgetful
functor k-Mod ÝÑ Set, is representable by pk, 1kq.



CHAPTER 2

Limits and Colimits

A Terminal objects and Products

Definition: A terminal object in a category C is an object 1 such that for every object A P ob C ,
there is a unique morphism A ÝÑ 1.1

Proposition: Any terminal object is unique up to unique isomorphism.

Proof. Suppose 1 and 11 are two terminal objects in the category C . Then there is a unique
morphism f : 1 ÝÑ 11 and a unique morphism g : 11 ÝÑ 1. This gives a morphism gf : 1 ÝÑ 1, but
as there is a unique morphism 1 ÝÑ 1, we must have gf � id1. Similarly fg � id11 , so 1 and 11

are isomorphic. �

The dual notion is an initial object: 0 is initial if there is a unique morphism 0 ÝÑ A for
each object A.

Examples: In Set, any one-element set is terminal, and of course they are all isomorphic. The
empty set is initial.

In Top, the one-element topological space is terminal and the empty topological space is initial.
In Gp, the one-element group is both initial add terminal. We write it as 0 p� t�uq and call it

a zero object. Similarly in R-Mod.
In Rng, the one-element ring is terminal, and Z is initial.

Definition: A product of two objects A,B P ob C is a triple pP, πA, πBq of an object P in
C and two morphisms πA : P ÝÑ A and πB : P ÝÑ B, such that, if there is any other triple
pC, f : C ÝÑ A, g : C ÝÑ Bq, then there is a unique morphism c : C ÝÑ P such that πAc � f and
πBc � g.2

Proposition: A product of A and B is unique up to unique isomorphism.

Proof. Similar to terminal object, or note:
A product of A and B is a representation of the functor C ÞÝÑ C pC,Aq�C pC,Bq : C op ÝÑ Set.

We already saw that representations are unique up to unique isomorphism. �

We write A�B for “the” product of A and B.

Examples: In Set, the product of two sets A,B is their cartesian product

A�B � tpa, bq | a P A, b P Bu.

In Gp, R-Mod, Rng, Top, . . . we can equip the cartesian product with the appropriate structure.
In Proofs, “and” is the product.

This generalises to products of any family of objects.

1We call this a universal property.
2Another universal property.

13
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The dual notion is a coproduct: pA � B, ιA, ιBq with ιA : A ÝÑ A�B, ιB : B ÝÑ A�B
such that for any C with f : A ÝÑ C and g : B ÝÑ C there is a unique morphism h : A�B ÝÑ C
such that hιA � f and hιB � g.

Examples: In Set, the coproduct A�B is the disjoint union A\B. The same will work in Top,
but not in Gp: There the coproduct A�B is the free product A �B.

In R-Mod (and AbGp), the coproduct is the same as the product. We also call it biproduct
or direct sum and write A`B.

In Proofs, “or” is the coproduct.

B Cones and Limits

Terminal objects and products are examples of limits, which we shall now define.

Definition: Let J be a particular category (usually small, often finite). A diagram of shape
J in C is a functor J ÝÑ C .

Remember the examples of finite categories from Section 1A (Example 3). If J � p � ,2,2 � q,

a diagram of shape J is a pair of parallel arrows A
f ,2
g

,2B in C . If J �

�
� � ,2

�� �%@@@@ �
��

� ,2 �

�

, then a

diagram of shape J is a commutative square

A
f ,2

g

��
l

B

h

��
C

k
,2 D

in C .
We sometimes call the objects vertices and the morphisms edges of the diagram.

Definition: Let D : J ÝÑ C be a diagram. A cone over D is an object A P C together with
morphisms (called legs) µj : A ÝÑ Dpjq for all j P ob J , such that for any morphism α : j ÝÑ j1

in J , the triangle

A
µj

x�zzzzzz µj1

�'EEEEEE

Dpjq
Dpαq

,2 Dpj1q

commutes (i.e. Dpαqµj � µj1).

Remark: A cone is really a special sort of natural transformation. Consider the constant functor
∆A : J ÝÑ C which sends each j P ob J to A P ob C and each morphism α to 1A in C . Then a
cone is a natural transformation µ : ∆A ÝÑ D.3

Definition: Given two cones pA,µq and pB, νq over a diagram D, a morphism of cones is a
morphism f : A ÝÑ B such that

A
f ,2

µj �&DDDDDD B

νjx�zzzzzz

Dpjq

commutes for all j P ob J .

3One side of the naturality square collapses to give a triangle.
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The cones over a particular diagram form a category.

Definition: A limit of D is a terminal cone, i.e. a terminal object in this category of cones (often
written pλj : L ÝÑ DpjqqjPob J ).

In pictures:

Dually, we have cocones under a diagram D (some people just say cone under D), and a
colimit is an initial cocone.

Proposition: Limits (and colimits) are unique up to unique isomorphism.

Proof. Exercise. �

So we can speak of “the” limit of D (if it exists). We say C has limits of shape J if any
diagram D : J ÝÑ C has a limit.

Examples: a) A terminal object is the limit of the empty diagram. A product is the limit
of a discrete diagram with two objects. More generally, we say product for the limit of
any discrete diagram. We write

±
jPob J Dpjq (or e.g.

±
i¤nAi). The legs are called

product projections.
b) The limit of a diagram of shape � ,2,2 � is called an equaliser: Given a pair of arrows

A
f ,2
g

,2B in C , a cone over this diagram is

C
µ1

y�~~~~~ µ2

�%@@@@@

A
f ,2
g

,2 B

such that µ2 � fµ1 � gµ1, or (simpler) just

C
c ,2 A

f ,2
g

,2 B

with fc � gc. A limit cone is a pair pE, eq with e : E ÝÑ A, fe � ge, such that any other
cone pC, cq factors through pE, eq: there is a unique morphism l : C ÝÑ E satisfying
el � c.

E
e ,2 A

f ,2
g

,2 B

C
D!l

aj
c

4=qqqqqq

A colimit of this diagram is called a coequaliser.
In Set, the equaliser of f and g is the set E � ta P A | fpaq � gpaqu equipped with

the inclusion map into A.
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c) The limit of a diagram of shape

�

��
� ,2 �

is called a pullback. A cone over such a

diagram is just a commutative square:

K
µ1 ,2

µ2

��

µ3

�%@@@@@@@ A

f

��
B g

,2 C

with µ3 � fµ1 � gµ2

i.e. the square commutes.
We write a pullback square as follows:

P ,2

��

A

f

��
B g

,2 C

or

A�C B
π1 ,2

π2

��

A

f

��
B g

,2 C

Pullbacks are also called fibred products.
We say pA �C B, π1, π2q is the pullback of f and g and π2 is the pullback of f

along g. A pullback of f with itself is also called the kernel pair of f .
In Set, we can construct pullbacks by first forming the product A� B and then the

equaliser P ÝÑ A�B of A�B
fπ1 ,2
gπ2

,2C , i.e. the set tpa, bq P A�B | fpaq � gpbqu.

Notice that the colimit under this diagram is trivial (Exercise: find it!).

The appropriate dual is a pushout: the colimit of a diagram of shape

� ,2

��

�

�
.

7 Theorem: (“constructing limits”)

i) If C has equalisers and all small products, then C has all small limits.
ii) If C has equalisers and all finite products, then C has all finite limits.

iii) If C has pullbacks and a terminal object, then C has all finite limits.

Proof.

(i) and (ii) Let D : J ÝÑ C be a diagram with J small (resp. finite). Form the products

P �
¹

jPob J

Dpjq and Q �
¹

αPmor J

Dpcodαq,

and the morphisms P
f ,2
g

,2Q defined by

παf � πcodα and παg � Dpαqπdomα.

P
f ,2

πj1 �&CCCCCCCC Q

πα

��
Dpj1q

P
g ,2

πj

��

Q

πα

��
Dpjq

Dpαq
,2 Dpj1q

Let e : L ÝÑ P be an equaliser of pf, gq. We claim that the family pλj � πje : L ÝÑ Dpjqq
forms a limit cone over D. It is indeed a cone, because, for any α : j ÝÑ j1 in J , we
have

Dpαqλj � Dpαqπje � παge � παfe � πj1e � λj1 .



C SPECIAL MORPHISMS 17

Given a cone pµj : M ÝÑ Dpjq | j P ob J q, there is a unique morphism m : M ÝÑ P
satisfying πjm � µj for all j. Then fm � gm, as παfm � παgm for all α. (Exercise:
Check this carefully!) So there is a unique n : M ÝÑ L with λjn � µj for all j.

(iii) It is enough to construct finite products and equalisers. Any finite product
±n
i�1Ai can

be constructed from products of pairs: ppA1 �A2q �A3q �A4 . . .
The product of the empty family (which is also finite) is the terminal object 1.
Given two objects A and B, their product can be constructed as a pullback of

A

��
B ,2 1.

Given a pair of parallel morphisms A
f ,2
g

,2B , their equaliser can be constructed as the

pullback of

A

p1A,fq

��
A

p1A,gq
,2 A�B.

A cone on this is
D

h ,2

k ��

A

A

satisfying h � k and fh � gk, so it is equivalent to a cone

over A
f ,2
g

,2B .

�

The categories Set, Gp, Rng, R-Mod, Top, . . . all have small products and equalisers, so they
have all small limits. We call a category with all small limits complete, and a category with all
finite limits finitely complete.

Similarly, the categories have small coproducts and coequalisers, so they are cocomplete.

C Special morphisms

Definition: A morphism f : A ÝÑ B in a category C is a monomorphism if, given any C
g ,2
h

,2A

with fg � fh, we necessarily have g � h. (f is left-cancellable.)

Dually, f is called an epimorphism if, given B
k ,2
l

,2D with kf � lf , we necessarily have

k � l.

Examples: In Set, monos are injective functions and epis are surjective functions. In Gp, monos
are injective group homomorphisms and epis are surjective group homomorphisms. Similarly in
Top monos are injective and epis are surjective.

HOWEVER it is not always this simple: for example Z ÝÑ Q is an epimorphism in CRng,
and in Mon, the inclusion pN,�q ÝÑ pZ,�q is epic (epimorphic).

Proposition: If f : A ÝÑ B and g : B ÝÑ A satisfy gf � 1A, then f is monic and g is epic.

Proof. If we have C
h ,2
k

,2A with fh � fk, then also gfh � gfk, i.e. h � k. So f is monic.

The statement that g is epic is dual, i.e.

g epic in C ô g monic in C op.

�
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Definition: a) If gf � 1A as above, we call f a split monomorphism and g a split
epimorphism.

b) We say f : A ÝÑ B is a regular monomorphism if it is an equaliser of some pair

B
g ,2
h

,2C . Dually, a regular epimorphism is the coequaliser of some pair D
k ,2
l

,2A .

Exercise: Prove that any regular mono is indeed monic. Prove that every split mono is a
regular mono (consider fg and 1B).

In Set, every mono is a regular mono, but not in Top. (In Top, regular monos are injections
f : Y ÝÑ X for which Y has the subspace topology of X.)

In Set, any mono with non-empty domain is split, and the fact that every epi is split in Set is
equivalent to the axiom of choice. In k-Modf.d., all monos and epis are split.

8 Proposition: (“epi + regular mono ñ iso”)
If f is both an epi and regular monic, then it is an iso.

Proof. If f : A ÝÑ B is the equaliser of B
g ,2
h

,2C , then g � h as f is epic. But 1B is an

equaliser of pg, gq, so by uniqueness of limits, f is an iso. �

Definition: A category is called balanced if every morphism which is monic and epic is an
isomorphism.

Set and Gp are balanced categories, but Mon and Top are not. (Top: continuous bijections
need not be homeomorphisms.)

In diagrams, we write A ,2 f ,2B for monos and A
f ,2,2 B for epis.

9 Lemma: (“Pullbacks preserve monos.”)
Given a pullback square

P
h ,2

k

��

A
��
f

��
B g

,2 C

if f is monic, then k is monic.

Proof. Suppose D
l ,2
m

,2P satisfy kl � km. Then fhl � gkl � gkm � fhm, so hl � hm. So

l and m correspond to the same cone over
A

��
B ,2 C

and hence l � m. So k is monic. �

Definition: A subobject of an object A in a category C is either a monomorphism A1 ,2 ,2A
in C , or an isomorphism class (in C {A) of such monomorphisms4. We write SubC pAq for the full
subcategory of C {A whose objects are the monomorphisms A1 ,2 ,2A . (Note that this category
is a preorder.)

A category C is well-powered if each SubC pAq is equivalent to a partially ordered set, i.e.
there exists a set tAi ,2 ,2A | i P Iu of monomorphisms meeting every isomorphism class in
SubpAq.

Examples: Set is well-powered since SubSetpAq � PA. Similarly, Gp, Rng, Top, . . . are all well-
powered.

4It should be clear from the context which of these is meant.
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D Preserving Limits

Definition: Let F : C ÝÑ D be a functor.

a) We say F preserves limits of shape J if, given any diagram D : J ÝÑ C and a limit
cone pλj : L ÝÑ Dpjq | j P ob J q for D, the cone pFλj : FL ÝÑ FDpjqqj is a limit for
FD.

b) We say F reflects limits of shape J if, givenD : J ÝÑ C and a cone pλj : L ÝÑ Dpjqqj
such that pFλj : FL ÝÑ FDpjqqj is a limit for FD, then pL, λjqj forms a limit for D.

c) We say F creates limits of shape J if, givenD : J ÝÑ C and a limit pµj : M ÝÑ FDpjqqj
for FD, there exists a cone pλj : L ÝÑ Dpjqqj over D in C whose image is isomorphic to
pM,µjqj ; and any such cone is a limit in C .5

Corollary: In any of the version of the “constructing limits” Theorem 7, we can replace “C has”
with either “C has and F : C ÝÑ D preserves” or “D has and F : C ÝÑ D creates”.

Proof. Exercise. �

10 Examples: (“Creating limits”)

a) The forgetful functor Gp ÝÑ Set creates all small limits; for example, if tGj | j P J u is
a family of groups, then the product set

±
jPJ Gj has a unique group structure making

the projections into homomorphisms, and this structure makes it into a product in Gp.
But Gp ÝÑ Set doesn’t preserve coproducts (or other colimits)6.

b) The forgetful functor Top ÝÑ Set preserves all small limits and colimits, but doesn’t
reflect them: given spaces X and Y , there are (in general) other topologies on the set

X �Y making the projections
X � Y

t}qqqqq
!)LLLLL

X Y
continuous, but not making it into a

product in Top. This functor also does not create products: while the choice of topology
on X�Y does not change its image under the forgetful functor, not any such choice turns
X � Y into a limit in Top, so the last part of the definition is not satisfied.

c) The inclusion functor AbGp ÝÑ Gp reflects coproducts, but doesn’t preserve them. A
coproduct

°
iPI Ai in Gp is non-abelian, unless all but one of the Ai are trivial, and then

it coincides with the coproduct in AbGp.

d) Let C be a category and B P ob C . The forgetful functor U : C {B ÝÑ C sending

�
� A

f��
B

�



to A creates all colimits which exist in C . A diagram D : J ÝÑ C {B is essentially a
diagram UD of shape J in C , together with a cocone pUDpjq ÝÑ BqjPob J under it.
Given a colimit cocone pUDpjq ÝÑ Lq for UD, we get a unique L ÝÑ B making all the
UDpjq ÝÑ L into morphisms of C {B, which “lifts” the colimit cocone to a colimit cocone

in C {B. However, C {B ÝÑ C doesn’t preserve all limits; e.g. if

�
� A

f��
B

�

and

�
� C

g
��
B

�

are

objects of C {B, their product in C {B is the diagonal of the pullback square

P ,2

�� �%@@@@@@@ A

f

��
C g

,2 B

if this exists in C , and P � A� C in general.

5This last part of the sentence is very important, see e.g. the example on topological spaces.
6It does create filtered colimits (of which directed limits are a special case). If you don’t know what that is,

either look it up or ignore this comment.
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e) “Limits in functor categories are constructed object by object.”
Let C and D be two categories, and write C ob D for the category of functors from the

discrete category on the objects of D to C , or “the product of ob D copies of C ”. Then
the forgetful functor U : rD ,C s ÝÑ C ob D creates all limits (and colimits) that exist in
C .

To see this, let D : J ÝÑ rD ,C s be a diagram in the functor category, and suppose
that for every object A of D , the diagram UDA (i.e. UD evaluated at A)7 has a limit
pLA, λAj q in C . Then clearly L : ob D ÝÑ C is a limit of UD.8 We want to show that
L is actually a functor L : D ÝÑ C and is the limit of D in rD ,C s. Given a morphism
f : A ÝÑ B in D , we have, for any morphism α : j ÝÑ j1 in J , a commutative square

DpjqA
DpαqA ,2

Dpjqf

��

Dpj1qA

Dpj1qf

��
DpjqB

DpαqB

,2 Dpj1qB

Here in the “usual” view, Dpαq is a natural transformation from Dpjq to Dpj1q, which
are functors D ÝÑ C . But we can also view it as saying that Dp�qf is a natural
transformation from “evaluation at A” to “evaluation at B”. So pLA,Dpjqf�λAj q forms
a cone on UDB , which gives a unique morphism Lf : LA ÝÑ LB making

LA
Lf ,2

λAj
��

LB

λBj
��

DpjqA
Dpjqf

,2 DpjqB

commute for each j P ob J . This makes L into a functor D ÝÑ C , the λj into natural
transformations L ÝÑ Dpjq, and L into the limit of D in rD ,C s.

(Exercise: Check all this.)
Note that this also shows that the functor “evaluation at A” evA : rD ,C s ÝÑ C

preserves all limits which exist in C .

11 Remark: (“Monos in functor categories”)
In any category, a morphism f : A ÝÑ B is monic if and only if

A
1A ,2

1A

��

A

f

��
A

f
,2 B

is a pullback (i.e. iff its kernel pair is pA, 1A, 1Aq.) Hence a functor which preserves pullbacks must
preserve monos. Therefore, supposing C has pullbacks9, a morphism α : F ÝÑ G in a functor
category rD ,C s is monic if and only if each component αC : FC ÝÑ GC is a mono in C . (c.f.
Example Sheet 1 Question 7.)10

There is a connection between initial objects and limits:

7Note that UDA � DA, because evaluation at A doesn’t involve any morphisms of D .
8I.e. this is just defined on objects.
9Or at least it must have kernel pairs, i.e. specific pullbacks.
10ð is obvious, and ñ follows from evA preserving pullbacks (or kernel pairs).



E PROJECTIVES 21

12 Lemma: (“Initial object as limit”)
Let C be an arbitrary category. Then C has an initial object if and only if the diagram 1C : C ÝÑ C
has a limit.11

Proof. “ñ” Let I be an initial object of C , and write λA : I ÝÑ A for the unique morphism
from I to each object A. Then we claim that pI, λAq forms a terminal cone on 1C . Indeed, it is a

cone as

I
λA

z����� λB

�$????

A
f

,2 B
commutes for each morphism f in C , by uniqueness of λB .

Given another cone pB,µAq over 1C , the morphism µI : B ÝÑ I satisfies
B

µI ,2

µA �%@@@@ I

λAz�����

A

(i.e.

λAµI � µA) for all A (as the µ are a cone), so µI is a morphism of cones. But any morphism of

cones ν satisfies
B

ν ,2

µI �$???? I

λI�1Iz�����

I

, so ν � µI . So µI is the unique morphism of cones, so pI, λAq is

the limit as claimed.
“ð” If we have a limit pI, λAq for 1C , we want to show I is initial. As we already have a

morphism λA : I ÝÑ A for each object A, we must show that it is unique, i.e. given f : I ÝÑ A,
we have f � λA.

We certainly have fλI � λA,

I
λI

z������ λA

�$>>>>>>

I
f

,2 A

so we just have to show that λI � 1I . Putting f � λA, we get λAλI � λA for all objects A, so λI
is a morphism of cones from the limit cone to itself.

I
λI ,2

λA �$>>>>>> I

λAz�������

A

So as there is a unique one, λI � 1I . �

E Projectives

Definition: An object P of a category C is projective if given any diagram (of solid arrows)

P

g

��

Dh

y�
A

f
,2,2 B

with f epic, there exists h : P ÝÑ A with fh � g.
Dually, I is injective in C if it is projective in C op.

A ,2 ,2

��

B

Dy�
I

11Notice that if C is not small, this is not a small diagram.
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Remark: Note that h need not be unique!12

If C is locally small, P is projective iff C pP,�q preserves epimorphisms.

Lemma: For any locally small C , all representable functors are projective in rC ,Sets.

Proof. The dual of “monos in functor categories”(Remark 11) says that α : F ÝÑ G is epic
in rC ,Sets iff αA : FA ÝÑ GA is surjective for all A. Now, given

C pA,�q

β
��

F α
,2,2 G,

by the Yoneda Lemma β corresponds to an element y P GA. As α is epic, there is an x P FA with
αApxq � y. Then x corresponds to γ : C pA,�q ÝÑ F with αγ � β. �

Lemma: A coproduct of projectives is projective.

Proof. Exercise. �

Examples: In Set, every object is projective (as any epi is split, which uses the Axiom of Choice).
In Gp, any free group is projective. In fact these are the only projective objects in Gp.
In R-Mod, a module M is projective if and only if it is a direct summand of a free module.

12This is called a weak universal property.



CHAPTER 3

Adjunctions

A Definitions and examples

Definition: (D.M. Kan) Let F : C ÝÑ D and G : D ÝÑ C be two functors. An adjunction
between F and G is a specification, for each pair pA P ob C , B P ob Dq, of a bijection betwen
morphisms FA ÝÑ B in D and morphisms A ÝÑ GB in C , which is natural in A and B.

(If C and D are locally small, this means that the functors C op � D ÝÑ Set sending pA,Bq
to DpFA,Bq and to C pA,GBq are naturally isomorphic.)

We say that F is left adjoint to G, or that G is right adjoint to F , and write pF % Gq to
indicate that there is such an adjunction.

Notation: Given C
F ,2
K D
G

lr , we sometimes write
FA ÝÑ B

A ÝÑ GB
for the bijection, and we write

f : A ÝÑ GB for the morphism corresponding to f : FA ÝÑ B, and g : FA ÝÑ B corresponds to

g : A ÝÑ GB. Notice that f � f and g � g.1

13 Examples: (Adjunctions)

a) The free functor F : Set ÝÑ Gp is left adjoint to the forgetful functor G : Gp ÝÑ Set, as
homomorphisms FA ÝÑ B are uniquely determined by mappings A ÝÑ GB. Similarly
for free rings, free R-modules, etc. (We will look at the meaning of the naturality in
Section B.)

b) The forgetful functor Top ÝÑ Set has both left and right adjoints: The left adjoint D
equips a set A with its discrete topology, since all functions DA ÝÑ X (for X an arbitrary
space) are continuous. The right adjoint I equips A with the indiscrete topology.

c) The functor ob: Cat ÝÑ Set has a left adjoint D sending a set A to the discrete category
DA (with objects the elements of A and only identity morphisms), since a functor DA ÝÑ
C is determined by its effect on objects. The functor ob also has a right adjoint I, which
sends A to the category with objects given by the elements of A, and exactly one morphism
a ÝÑ b for each pair pa, bq P A�A. (This makes all morphisms into isomorphisms!)2

The functor D itself also has a left adjoint π0. π0pC q is the set of connected compo-
nents of C , i.e. the quotient of ob C by the smallest equivalence relation which identifies
c and d whenever there exists a morphism c ÝÑ d in C . (Given a functor F : C ÝÑ DA,
F is necessarily constant on each connected component of C , as each morphism must go
to an identity morphism. So F induces a function π0C ÝÑ A.)

d) Let 1 denote the category with one object � and one morphism. A functor F : 1 ÝÑ C
picks out an object F� of C . This F is left adjoint to the unique functor C ÝÑ 1 ô F�
is an initial object of C .

F is right adjoint to C ÝÑ 1 ô F� is a terminal object of C .

1We sometimes call this adjunction operation p q “transpose”.
2So you could think of DA as lots of completely separated objects and IA as “one big connected blob” of

isomorphic objects.

23
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e) Let Idem be the category with objects being pairs pA, eq, where A is a set and e : A ÝÑ A
satisfies e�e � e (is idempotent). (Morphisms pA, eq ÝÑ pA1, e1q are functions f : A ÝÑ A1

satisfying
A

f ,2

e ��

A1

e1��
A

f
,2 A1

.)

We have a functor F : Set ÝÑ Idem sendingA to pA, 1Aq, and a functorG : Idem ÝÑ Set
sending pA, eq to tepaq | a P Au � ta P A | epaq � au (the image of e, or the fixed points
of e). G is both left and right adjoint to F :

� morphisms f : pA, 1Aq ÝÑ pB, eq must satisfy
A

f ,2

1A

B
e��

A
f

,2 B

, i.e. f must land in the

image of e. This gives a bijection
pA, 1Aq ÝÑ pB, eq

A ÝÑ tepbq | b P Bu
.

� morphisms f : pB, eq ÝÑ pA, 1Aq must satisfy
B

f ,2

e ��

A
1A

B
f

,2 A

so f is completely deter-

mined by what it does on the image of e, which gives a bijection
pB, eq ÝÑ pA, 1Aq

tepbq | b P Bu ÝÑ A
.

f) Let X be a topological space, CX the ordered set of closed subsets of X and PX the
set of all subsets of X.3 The inclusion CX ÝÑ PX has a left adjoint A ÞÝÑ A, since for
any closed set C we have A ¤ C ô A ¤ C.

(An adjunction between posets P
F ,2
K Q
G

lr always looks like Fa ¤ bô a ¤ Gb.)

g) (Adjunctions of contravariant functors)
Consider two setsA andB and a relationR � A�B. We have mappings r : PA ÝÑ PB

sending

A1 ÞÝÑ rpA1q � tb P B | p@a P A1qppa, bq P Rqu4

and l : PB ÝÑ PA sending

B1 ÞÝÑ lpB1q � ta P A | p@b P B1qppa, bq P Rqu.

r and l are contravariant functors between posets, and we have

A1 � lpB1q ô A1 �B1 � Rô B1 � rpA1q5

We can regard l : PB ÝÑ PAop as left adjoint to r : PAop ÝÑ PB. (We sometimes
say that l and r are contravariant functors adjoint on the right.)

h) The contravariant powerset functor P� : Setop ÝÑ Set is right adjoint to P� : Set ÝÑ Setop,
since functions A ÝÑ PB correspond to relations R � A � B, and hence to functions
B ÝÑ PA.

B Properties

What does the naturality in A and B of the bijection
FA ÝÑ B

A ÝÑ GB
mean?

3Remember how posets can be regarded as categories.
4Those b which are related to everything in A1.
5All a P A1 are related to all b P B1.
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Naturality in A says that for a : A1 ÝÑ A in C ,

C pA,GBq
p q ,2

��a

��

DpFA,Bq

��Fa

��
C pA1, GBq

p q

,2 DpFA1, Bq

commutes, and naturality in B says that for b : B ÝÑ B1 in D ,

DpFA,Bq
p q ,2

b��

��

C pAG,Bq

Gb��

��
DpFA,B1q

p q

,2 C pA,GB1q

commutes, i.e.
g�a � g�Fa and b�f � Gb�f.

So in fact we have natural transformations like the ones appearing in the Yoneda Lemma:

DpFA,�q ÝÑ C pA,G�q

and C p�, GBq ÝÑ DpF�, Bq.

So these isomorphisms are completely determined by where the identity goes:

FA
1FA ,2FA corresponds to A

ηA ,2GFA.

Any FA
f ,2B corresponds to A

ηA ,2GFA
Gf ,2GB.

(I.e. f � f1FA � Gf1FA � GfηA.)

GB
1GB ,2GB corresponds to FGB

εB ,2 B.

Any A
g ,2GB corresponds to FA

Fg ,2FGB
εB ,2B.

Lemma: The ηA : A ÝÑ GFA form a natural transformation η : 1C ÝÑ GF . (Dually, the εB form
a natural transformation ε : FG ÝÑ 1D .)

Proof. Given a : A ÝÑ A1, we have:

A
ηA ,2GFA

GFa ,2GFA1 corresponds to FA
Fa ,2FA1

A
a ,2A1

ηA1 ,2GFA1 corresponds to FA
Fa ,2FA1

1FA1 ,2FA1

So the following square commutes

A
a ,2

ηA

��

A1

ηA1

��
GFA

GFa
,2 GFA1

and η is natural. �

Notation: Given a functor G : D ÝÑ C and an object A of C , we write pA Ó Gq for the category
whose objects are pairs pB, fq, where B P ob D and f : A ÝÑ GB in C , and whose morphisms

pB, fq ÝÑ pB1, f 1q are morphisms g : B ÝÑ B1 in D such that

A
f

x�zzzzz f 1

�'EEEEE

GB
Gg

,2 GB1
commutes.

(Similarly, there is a category pG Ó Aq.)
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14 Theorem: (“Adjunctions via initial objects”)
Let G : D ÝÑ C be a functor. Then specifying a left adjoint for G is equivalent to specifying, for
each object A P ob C , an initial object of pA Ó Gq.

Proof. “ñ” Let F : C ÝÑ D be a left adjoint for G. We show that pFA, ηAq is an initial
object of pA Ó Gq.

Given an object pB, fq of pA Ó Gq, the triangle

A

ηA

��

f

�'GGGGGGGGG

GFA
Gh

,2 GB

commutes iff

FA

1A

��

f

�&CCCCCCCC

FA
h

,2 B

commutes.

So there is a unique morphism h : pFA, ηAq ÝÑ pB, fq in pA Ó Gq, namely f .
“ð” Given an initial object pFA, ηAq of each category pA Ó Gq, we already have the action of

F on objects. We want to see what F does on morphisms, that it is a functor and that it is adjoint
to G.

Given f : A ÝÑ A1, we get an object pA
f ,2A1

ηA1 ,2GFA1 q of pA Ó Gq. So there is a unique

morphism g : FA ÝÑ FA1 making
A

f ,2

ηA ��

A1

ηA1��
GFA

Gg
,2 GFA1

commute. So we define Ff � g. The unique-

ness of g makes F functorial (check this!). To see that F is adjoint to G, take any h : FA ÝÑ B.

Then the composite A
ηA ,2GFA

Gh ,2GB is a morphism A ÝÑ GB. Given k : A ÝÑ GB, there

is a unique morphism h : FA ÝÑ B making

A
ηA ��

k

�)JJJJJJ

GFA
Gh

,2 GB
commute. So we get a bijection.

Naturality in B is built in:

Given
FA

h ,2

h1 �&DDDDDD B

b
��
B1

, we get
A

ηA ,2 GFA
Gh ,2

Gh1 �(IIIIIII GB

Gb
��

GB1

.

Naturality in A needs η to be a natural transformation, which was built in to the definition of
F :

Given
A

k ,2

a ��

GB

A1
k1

7Byyyyy
, we get

FA
h ,2

Fa ��

B

FA1
h1

7Byyyyy
satisfying

A1

ηA1

��

k1

�'GGGGGGGGG

A

ηA

��

k

�(IIIIIIIIII

a

6?

GFA1
Gh1 ,2 GB

GFA
Gh

,2
GFa

6?

GB

vvvvvvvvv

vvvvvvvvv

i.e. both h and h1Fa are morphisms pFA, ηAq ÝÑ pB, kq � pB, k1aq in pA Ó Gq, so they are the
same. So F % G. �

Example: C has limits (resp. colimits) of shape J if and only if the functor ∆: C ÝÑ rJ ,C s
sending an object A to the constant diagram ∆A has a right (resp. left) adjoint.
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15 Corollary: (“Uniqueness of Adjoints”)
Any two left adjoints of a given functor G : D ÝÑ C are canonically naturally isomorphic.

Proof. Suppose F and F 1 are both left adjoints of G. Then pFA, ηAq and pF 1A, η1Aq are
both initial objects of pA Ó Gq, so there is a unique isomorphism αA : pFA, ηAq ÝÑ pF 1A, η1Aq in
pA Ó Gq. The fact that α is a natural transformation follows from uniqueness. �

16 Lemma: (“Adjoints compose”)

Given C
F ,2D
G

lr
H ,2E
K

lr with F % G and H % K, then we have HF % GK.

Proof. We have bijections

HFA ÝÑ C
FA ÝÑ KC

A ÝÑ GKC

natural in A and C. �

17 Corollary: (“Adjoints in squares”)
Let

C
F ,2

G

��

D

H

��
E

K
,2 F

be a commutative diagram where all of F , G, H, K have left adjoints. Then the diagram

C Dlr

E

LR

Flr

LR

of left adjoints commutes up to natural isomorphism.

Proof. Both composites of the square are left adjoint to HF � KG, so they are isomorphic
by uniqueness of adjoints (Corollary 15). �

C Units and Counits

Definition: Given an adjunction pF % Gq, the natural transformation η : 1C ÝÑ GF is called the
unit of the adjunction. Dually, ε : FG ÝÑ 1D is the counit of the adjunction.

Recall that, given F % G, we have the following correspondances:

FA
f ,2B ÐÑ A

ηA ,2GFA
Gf ,2GB

A
g ,2GB ÐÑ FA

Fg ,2FGB
εB ,2B

Recall also that naturality in A and B means

ga � gFa and bf � Gbf.

18 Theorem: (“Adjunctions via units and counits”)

Given C
F ,2D
G

lr , specifying an adjunction F % G is equivalent to specifying natural transforma-

tions η : 1C ÝÑ GF and ε : FG ÝÑ 1D satisfying the triangular identities: η and ε must make
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the diagrams

F
Fη ,2

1F �'EEEEEEEEE FGF

εF

��
F

and

G
ηG ,2

1G �'EEEEEEEEE GFG

Gε

��
G

commute.

Proof. Given an adjunction F % G, the unit A
ηA ,2GFA corresponds to FA

1FA ,2FA and

to FA
FηA ,2FGFA

εFA ,2FA , so the first triangular idetity follows. Dually, the second one follows
using εB .

Conversely, given η and ε satisfying the triangular identities, we must show that the mappings
f ÞÝÑ Gf�ηA and g ÞÝÑ εB�Fg are inverse to each other, and natural in A and B. We have
commutative diagrams

FA
FηA ,2

1FA �(

FGFA
FGf ,2

εFA

��

FGB

εB

��
FA

f
,2 B

and

A

ηA

��

g ,2 GB

ηGB

��

1GB

�(
GFA

GFg
,2 GFGB

GεB

,2 GB

which prove that the mappings are mutually inverse. Naturality in A and B follows easily from
functoriality of F and G. �

Examples: a) Consider Set
F ,2
K Gp
G

lr , the “forgetful/free” adjunction. For a set A, the unit

ηA : A ÝÑ GFA is the inclusion of the generators, and for a group B, εB : FGB ÝÑ B
is evaluation.

b) The abelianisation functor ab: Gp ÝÑ AbGp is left adjoint to the inclusion I : AbGp ÝÑ Gp.
For a group G, ηG : G ÝÑ IabG � G{rG,Gs is the quotient map. For an abelian group
A, εA : abIA ÝÑ A is the canonical iso A{rA,As ÝÑ A (note that rA,As is trivial).

c) Consider a space X and the adjunction X
p q ,2
K CX
I

lr given in the Adjunctions Exam-

ple 13f). Then the unit is A ¤ A, i.e. any set is inside its closure, and the counit is
F ¤ F , i.e. any closed set contains its closure.

d) Write down the unit and counit for any example of adjunction that you know.

19 Lemma: (“reflections”)
Given an adjunction F % G with counit ε : FG ÝÑ 1D ,

i) G is faithful ô εB is an epimorphism for all B.
ii) G is full and faithful ô εB is an isomorphism for all B.

Proof. i) Given g : B ÝÑ B1, its image Gg : GB ÝÑ GB1 corresponds under the ad-

junction to FGB
εB ,2B

g ,2B1 (by naturality of ε). So if g1 : B ÝÑ B1 satisfies Gg �
Gg1 and εB is an epi, then g � g1 and so G is faithful.

Conversely, if G is faithful and gεB � g1εB , then Gg � Gg1, so g � g1 and so εB is
epic.
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ii) Suppose ε is an isomorphism. Then by i) G is faithful. Given f : GB ÝÑ GB1, we can
form the composite

g �

FGB
Ff ,2 FGB1

εB1

��
B

ε�1
B

LR

B1

Then g satisfies FGg � Ff (as εB and εB1 are isos), and so Gg corresponds under the
adjunction to εB1FGg � εB1Ff , which is also what f corresponds to, so Gg � f , so G is
full.

Conversely suppose thatG is full and faithful. We have a morphism ηGB : GB ÝÑ GFGB,
which is Gg for a unique g : B ÝÑ FGB (existence as G is full, uniqueness as G is faith-
ful). We show that g is the inverse of εB : We have the triangular identity

GB
ηGB

Gg
� ,2

1GB �(IIIIIIIII GFGB

GεB

��
GB

which gives εBg � 1B as G is faithful.
We can also use the other triangular identity and naturality of ε to show that gεB �

1FGB .

FGB
εB ,2

FηGB�FGg

��

1FGB

!)

B

g

��
FGFGB εFGB

,2 FGB

So εB is an isomorphism.
�

Definition: a) An adjunction where G is full and faithful is called a reflection.
b) A reflective subcategory is a full subcategory D of C for which the inclusion functor

D ÝÑ C has a left adjoint.

Examples: a) We have already seen that AbGp is reflective in Gp. Given a group G, the
commutator subgroup rG,Gs has the property that G{rG,Gs is abelian and any homo-
morphism G ÝÑ A with A abelian factors uniquely through G ÝÑ G{rG,Gs.

b) Let C denote the full subcategory of AbGp whose objects are torsion groups (those in
which every element has finite order). Then C is coreflective in AbGp: Given A, the
subgroup At of torsion elements in A is the required coreflection, since any homomorphism
B ÝÑ A with B a torsion group factors through the inclusion At ÝÑ A.

c) Let C � Top and let D be the full subcategory of compact Hausdorff spaces. Then the
Stone-Čech compactification βX of an arbitrary space X is its reflection in D .

D Adjoint Equivalence

An adjunction whose unit and counit are both isomorphisms is in particular an equivalence of
categories; we call it an adjoint equivalence.

20 Lemma: (“Any equivalence can be made into an adjoint one.”)

Consider an equivalence C
F ,2D
G

lr , α : 1C
� ,2GF , β : 1D

� ,2FG . Then there exists an ad-

joint equivalence pF % Gq with unit α.
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Proof. We define ε as the composite

ε : FG
βFG�FGβ ,2FGFG

pFαGq
�1

,2FG
β�1

,21D .

Note here that βFG � FGβ, since

1D
β ,2

β ��

FG
βFG��

FG
FGβ

,2 FGFG

commutes and β is pointwise epic. (Similarly,

αGF � GFα.)
We have to verify the triangular identities. We have

F

Fα

��

βF ,2 FGF

FGFα�FαGF

�� LLLLLLLLLL

LLLLLLLLLL

FGF
βFGF

,2 FGFGF
pFαGF q

�1

,2 FGF
β�1
F

,2 F

which reduces F
Fα ,2FGF

εF ,2F to 1F , and similarly G
αG ,2GFG

Gε ,2G is reduced to 1G.
�

E Adjunctions and Limits

21 Theorem: (“Right adjoints preserve limits”)
Suppose G : D ÝÑ C has a left adjoint F . Then G preserves all limits which exist in D .

Proof 1. “Apply adjunction to each leg.” Consider a diagram D : J ÝÑ D . Then cones
over GD with summit A correspond to cones over D with summit FA. Hence, if D has a limit
pλj : L ÝÑ DpjqqjPob J , each such cone corresponds to a morphism FA ÝÑ L, which in turn
corresponds to a morphism A ÝÑ GL. So pGλj : GL ÝÑ GDpjqq is a limit cone in C . �

Proof 2. 6 Recall that D has limits of shape J iff the “constant diagram” functor ∆: D ÝÑ rJ ,Ds
has a right adjoint. So suppose that C and D have limits of shape J , for some J . Form the
commutative square

C
F ,2

∆

��

D

∆

��
rJ ,C s

rJ ,F s
,2 rJ ,Ds

where all the functors have right adjoints. So by the “adjoints in squares” Corollary 17, the diagram
of right adjoints

rJ ,Ds
rJ ,Gs ,2

limj

��

rJ ,C s

limj

��
D

G
,2 C

commutes up to isomorphism, i.e. G preserves limits of shape J . �

For a converse to this theorem, we need to construct initial objects in the categories pA Ó Gq,
under the assumption that D has and G preserves suitable limits.

22 Lemma: (“limits in pA Ó Gq”)
Consider G : D ÝÑ C and A P ob C . If D has and G preserves limits of shape J , then pA Ó Gq
has limits of shape J , and the forgetful functor U : pA Ó Gq ÝÑ D creates them.

6This proof uses more assumptions: we need all limits of shape J to exist in D and in C . But it gives the

“moral reason” for this result to be true.
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Proof. Consider a diagram D : J ÝÑ pA Ó Gq. Write the object Dpjq as pUDpjq, fjq where
fj : A ÝÑ GUDpjq.

Suppose pλj : L ÝÑ UDpjqqjPob J is a limit for UD. Then pGλj : GL ÝÑ GUDpjqq is a limit
for GUD as G preserves limits. But pfjqjPob J is a cone over GUD, since the edges of UD lie in
pA Ó Gq. So we get a unique f : A ÝÑ GL such that Gλj�f � fj for all j, i.e. such that the λj
become morphisms pL, fq ÝÑ Dpjq in pA Ó Gq.

They form a cone over D, since U is faithful (which implies that commutativity of diagrams
carries over to cones over D), and it is straight forward to verify that this is a limit cone in pA Ó Gq.
[Verify it!] �

23 Theorem: (Primeval Adjoint Functor Theorem)
Suppose D has all limits. Then a functor G : D ÝÑ C has a left adjoint if and only if it preserves
all limits.

Proof. ñ Any right adjoint preserves limits.
ð For each A P ob C , pA Ó Gq has all limits by the “limits in pA Ó Gq” Lemma 22, so it has an

initial object by the “initial object as limit” Lemma 12 (Section 2D). Then by the “Adjunctions
via Initial objects” Theorem 14, G has a left adjoint. �

However, if a category D has limits of all diagrams over categories “as big as itself”, then D
is a preorder.

The Primeval Adjoint Functor Theorem is useful for posets (c.f. Example Sheet 3 Question
2), but to get a result applicable to general categories we need to impose “size restrictions” on D
and/or C to ensure that the “large” limit in the “initial object as limit” Lemma can be reduced
to a small one.

Definition: Let C be a category. A set of objects tAi | i P Iu in C is called weakly initial if for
any B P ob C there is an i P I and a morphism hi : Ai ÝÑ B in C .

24 Theorem: (General Adjoint Functor Theorem)
Suppose D is locally small and complete (i.e. D has all small limits). Then a functor G : D ÝÑ C
has a left adjoint if and only if G preserves all small limits and for each A P ob C , pA Ó Gq has a
weakly initial set.

Proof. ñ G preserves small limits as a right adjoint, and for each A, pFA, ηA : A ÝÑ GFAq
is an initial object of pA Ó Gq, i.e. a singleton weakly initial set.

ð By the “Limits in pA Ó Gq” Lemma 22, each pA Ó Gq is complete; also pA Ó Gq inherits
local smallness from D . so we just have to prove

Claim: If A is complete, locally small and has a weakly initial set, then A has an initial object.

Proof of claim. Let tAj , j P Ju be the weakly initial set in A . Form the product P �±
jPJ Aj . Then for any C P ob A there is a morphism P ÝÑ C (i.e. P is a weakly initial object7).

Form the diagram
P

,2
... ,2P (†)

7Just choose the appropriate projection from the product and the morphism given from the weakly initial set.
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with edges all morphisms P ÝÑ P that exist in A . Let I ÝÑ P be a limit for (†) (industrial
strength equaliser). Note that I ,2 ,2P is monic8.

For every C P A , there exists a morphism I ÝÑ C, namely I ,2 ,2P ,2C . We want

to show that this is unique. Suppose there are two morphisms I
f ,2
g

,2C . We can form their

equaliser E ,2 ,2I . E is an object of A , so there is a map P ÝÑ E. Then the composi-

tion P ,2E ,2 ,2I ,2 ,2P occurs as an arrow in (†), so I ,2 ,2P ,2E ,2 ,2I ,2 ,2P �

I ,2 ,2P .9 But I ,2 ,2P is monic, so I ,2 ,2P ,2E ,2 ,2I � idI . So E ÝÑ I is split epic, so

E ,2I
f ,2C � E ,2I

g ,2C implies f � g. So I is an initial object of A . �

This proves that G has a left adjoint, using the “Adjunctions via initial objects” Theorem 14.
�

For another version of the Adjoint Functor Theorem, we need:

Definition: A coseparating family G for a category C is a family of objects G � pGi | i P Iq

such that for any pair A
f ,2
g

,2B in C with f � g, there is an i P I and an h : B ÝÑ Gi such that

hf � hg.

25 Theorem: (Special Adjoint Functor Theorem)
Suppose both C and D are locally small, and that D is complete and well-powered and has a
coseparating set. Then a functor G : D ÝÑ C has a left adjoint if and only if G preserves small
limits.

Idea of proof. pA Ó Gq inherits completeness, local smallness and well-poweredness from D
and the coseparating set for D gives a coseparating set for pA Ó Gq.

So we just need to prove that if A is complete, locally small and well-powered and has a
coseparating set, then A has an initial object.

Take the product P of the coseparating set and a limit of a representing set of subobjects of P .
This gives a smallest subobject I ,2 ,2P . It is easy to show that there is at most one morphism
I ÝÑ C for any C, but constructing one is more complicated and uses the coseparating set (and
local smallness). �

Proof. “ñ” G preserves all limits that exist in D as it is a right adjoint.
“ð” The “limits in pA Ó Gq” Lemma 22 implies that each pA Ó Gq is complete; it also

inherits local smallness from D . The Remark 11 “Monos in functor categories” implies that the
forgetful functor pA Ó Gq ÝÑ D preserves monos (as it creates and so preserves limits by “limits in
pA Ó Gq”), so the subobjects of pB, fq in pA Ó Gq are those subobjects B1 ,2 ,2B in D for which

f : A ÝÑ GB factors through GB1 ,2 ,2GB . So pA Ó Gq inherits well-poweredness from D .
Given a coseparating set S for D , the set S 1 � tpB, fq| B P S , f : A ÝÑ GBu (i.e. taking

all possible such f) is a coseparating set for pA Ó Gq: if we have pC, fCq
g ,2
h

,2 pD, fDq with g � h

in pA Ó Gq, there exists B P S and k : D ÝÑ B such that kg � kh. Taking f � pGkqfD, we have
pB, fq P S 1 and kg � kh in pA Ó Gq.

A
fC

w�yyyyyyyyy
fD

��

f

�'EEEEEEEEE

GC
Gg ,2
Gh

,2 GD
Gk ,2 GB

Note that S 1 really is a set, as A is locally small.

8This follows from the property of a limit.
9Because the identity is also a morphism in (†).
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So we have to show that if a category A is complete, locally small, well-powered and has a
coseparating set, then A has an initial object I.

Let tBj , j P Ju be a coseparating set for A . Form P �
±
jPJ Bj (possible as A is complete),

and a set tPk ,2 ,2P | k P Ku of representatives of subobjects of P (possible as A is well-powered).

Form the limit of the diagram with edges all the Pk ,2 ,2P for k P K (possible as A is complete).

Pk �'

�'GGGGGG
...

I

7Axxxxxxx ,2

�'FFFFFFF ...
,2 ,2

...

P

Pk1
7A

7Awwwwww

The legs I ÝÑ Pk are also monos (proof similar to “Pullbacks preserve monos” Lemma 9). We
have

pI ,2 ,2P q ¤ p Pk ,2 ,2 P q

as subobjects, for all k P K. So I ,2 ,2P is the smallest subobject of P . We want to show that I
is initial in A .

First we show that there can be at most one morphism I ÝÑ C for any C P ob A . Suppose

we have I
f ,2
g

,2C . We can form the equaliser E ,2 ,2I
f ,2
g

,2C . Then E ,2 ,2I ,2 ,2P is a

subobject of P , but I ,2 ,2P is the smallest, so E ÝÑ I is an isomorphism, and so f � g.
Now we want to construct a morphism I ÝÑ C.
For C P ob A , form the set T � tpj, fq| j P J, f : C ÝÑ Bju, and the product Q �±

pj,fqBj . We have a canonical morphism h : C ÝÑ Q, defined by composition with the pro-

jections C
h ,2

f �%@@@@ Q
πpj,fq��

Bj

for all pj, fq P T . This h is monic: for D
g1 ,2
g2

,2C
h ,2Q with hg1 � hg2,

we have fg1 � fg2 for all pj, fq P T .

D
g1 ,2
g2

,2 C

f �$????????
h ,2 Q

πpj,fq

��
Bj

So as the Bj form a coseparating set, g1 � g2.

We also have a morphism l : P ÝÑ Q defined by P
l ,2

πj �%@@@@ Q.
πpj,fq��

Bj

Form a pullback

R
o ,2

��
m

��

C
��
h

��
P

l
,2 Q

Here m is also monic, as pullbacks preserve monos (Lemma 9), so R is a subobject of P . But
I ,2 ,2P is the smallest, so there is a morphism I ,2 ,2R ,

R
o ,2

��
m

��

C
��
h

��
I

3;

#+
#+OOOOO

P
l

,2 Q

which gives a morphism I ÝÑ R ÝÑ C as desired. �
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Examples: a) Consider the forgetful functor U : Gp ÝÑ Set. From the “creating limits”
Example 10a) we know that Gp has all small limits and U preserves them; and Gp is
locally small. To show U has a left adjoint, we need to find a weakly initial set of pA Ó Uq
(so we can use the General Adjoint Functor Theorem): given a set A, any function
f : A ÝÑ UG factors through UpH ÝÑ Gq where H is the subgroup generated by the
image of f . And UH has cardinality ¤ maxtℵ0, cardAu. But, up to isomorphism, there
is only a set of groups of a given cardinality, and there is only a set of functions from A
to any such group. However, this argument uses most of the machinery required for the
explicit construction of free groups.

In fact, in many cases, verifying that each pA Ó Gq has a weakly initial set is “equiva-
lent in work” to actually constructing a free functor. There are some (more complicated)
examples where some cardinality arguments will work but not give you an explicit con-
struction, but we can’t cover those with our knowledge.

b) Consider the inclusion G : KHaus ÝÑ Top. By Tychonoff’s Theorem, KHaus has and G

preserves all small products; similarly for equalisers, since if X
f ,2
g

,2Y is a parallel pair

in Top with Y Hausdorff, then the equaliser E ,2 ,2X is a closed subspace of X, and so
compact if X is. KHaus and Top are both locally small, and KHaus is well-powered, since
subobjects of X correspond to closed subspaces of X. Moreover, r0, 1s is a coseparator
for KHaus, by Uryson’s Lemma. So by the Special Adjoint Functor Theorem, G has a
left adjoint β, the Stone-Čech compactification functor.

In fact, Čech’s original proof of existence of β goes as follows: given X, form the
product P �

±
f : XÝÑr0,1sr0, 1s, and the canonical map h : X ÝÑ P defined by πfh � f ,

and then take βX to be the closure of the image of h. This is exactly the construction
given by the SAFT.



CHAPTER 4

Monads

A Monads and their Algebras

Suppose we have an adjunction C
F ,2
K D
G

lr . How much of this can we describe without men-

tioning the category D?
We have the composite T � GF : C ÝÑ C , and the unit η : 1C ÝÑ T and the natural trans-

formation GεF : GFGF ÝÑ GF which we denote µ : TT ÝÑ T . These satisfy the identities

T
Tη ,2

1T
�%BBBBBBBBBB TT

µ

��

p1q

T

and

T
ηT ,2

1T
�%BBBBBBBBBB TT

µ

��

p2q

T

by the triangular identities of the adjunction, and

TTT
Tµ ,2

µT

��
p3q

TT

µ

��
TT µ

,2 T

by naturality of ε.

Definition: A monad T � pT, η, µq on a category C consists of a functor T : C ÝÑ C and natural
transformations η : 1C ÝÑ T (the unit) and µ : TT ÝÑ T (the multiplication) satisfying the unit
laws p1q and p2q and associativity p3q.

Example: Given a monoid M , we have a monad structure on the functor M � p�q : Set ÝÑ Set;
the unit ηA : A ÝÑM �A sends a to p1, aq, and multiplication µA : M �M �A ÝÑM �A sends
pm,n, aq to pmn, aq.

Is this induced by an adjunction? Yes!
Consider the category M -Set of M -sets1; this has a forgetful functor G : M -Set ÝÑ Set, which

has a left adjoint F given by FA � M � A with M -action by multiplication on the left factor.
This gives rise to the monad just described.

Definition: Let T � pT, η, µq be a monad on a category C . A T-algebra is a pair pA,αq where
A P ob C and α : TA ÝÑ A satisfies

A
ηA ,2

1A
�%BBBBBBBBBB TA

α

��

p4q

A

and

TTA
Tα ,2

µA

��
p5q

TA

α

��
TA α

,2 A.

1These are sets with an action of M on them.

35
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A homomorphism f : pA,αq ÝÑ pB, βq of T-algebras is a morphism f : A ÝÑ B in C satisfying

TA
Tf ,2

α

��
p6q

TB

β

��
A

f
,2 B.

We write C T for the category of algebra and their homomorphisms.

Examples: a) The identity functor is a monad on C , its category of algebras is C .
b) There is a list monad pL , η, µq on Set as follows:

L : Set ÝÑ Set

X ÞÝÑ tlists px1, . . . , xkq | k ¥ 0, each xi P Xu

and appropriately on morphisms. The unit is defined by

ηX : X ÝÑ LX

x ÞÝÑ pxq “singleton list”

and the multiplication

µX : L LX ÝÑ LX

ppx11, . . . , x1nq, . . . , pxk1, . . . , xkmqq ÞÝÑ px11, . . . , x1n, . . . , xkmq

is concatenation.
An algebra for L is a monoid. Indeed, it is a set X with a map

θ : LX ÝÑ X

pq ÞÝÑ e

px1, . . . , xkq ÞÝÑ x1 � x2 � � �xk

giving multiplication2.
c) Powerset monad: Take the covariant powerset functor P : Set ÝÑ Set; the unit is

ηX : X ÝÑ PX

x ÞÝÑ txu “singleton set”

and multiplication

µX : PPX ÝÑ PX

tAi, i P Iu ÞÝÑ
¤
iPI

Ai

is union.
An algebra for P is a complete lattice:

PX ÝÑ X

A ÞÝÑ
ª

A (join of A)

X ÞÝÑ J

∅ ÞÝÑ K

Indeed, we get a partial order on X: a ¤ b if
�
ta, bu � b. You can check that indeed

a ¤ J @a P X and K ¤ a @a P X using Diagram p5q. As soon as we have all joins and a
K, we also get all meets (by the join of the set of lower bounds, which is non-empty as
we have K).

Algebra homomorphisms are those which preserve arbitrary joins, so the category of
algebras is that of sup-complete semilattices.

2Of all arities at once. Here pq is the empty list.
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B Eilenberg-Moore Category

Proposition: (Eilenberg-Moore) There is an adjunction C
F T

,2
K C T

GT
lr inducing the monad T.

Proof. We define GT as the forgetful functor pA,αq ÞÝÑ A, f ÞÝÑ f , and FTA � pTA, µAq,
which is an algebra by p2q and p3q (called a free T-algebra). We let FTpf : A ÝÑ Bq � Tf , which
is a homomorphism by naturality of µ.

Clearly GTFT � T , so we take η to be the unit of the adjunction. The counit ε : FTGT ÝÑ 1C T

is defined by εpA,αq � α : pTA, µAq ÝÑ pA,αq (which is a homomorphism by p5q and natural by

p6q). The triangular identities for η and ε are just diagrams p1q and p4q. Also, GTεF TA � µA by
definition of FT, so the monad induced by pFT % GTq is pT, η, µq. �

There may be other adjunctions inducing the monad pT, η, µq.

Example: Consider Set
D ,2
K Top
U

lr . The monad this induces on Set is the identity monad, which

has Set
1 ,2
K Set
1

lr as its Eilenberg-Moore adjunction.

But the Eilenberg-Moore adjunction is a terminal object in the category of adjunctions inducing
T. We will make this more precise.

Definition: Given a monad T � pT, η, µq on C , let AdjpTq be the category whose objects are

adjunctions
D

G��%

C

F

LR
inducing the monad T, and whose morphisms

D
G��%

C

F

LR
ÝÑ

D 1

G1

��%

C

F 1

LR
are functors

H : D ÝÑ D 1 such that HF � F 1 and G1H � G.

26 Proposition: (“Eilenberg-Moore is terminal”)

Given a monad T � pT, η, µq on C and an object
D

G��%

C

F

LR
of AdjpTq, there is a unique morphism

D
G

�#<<<<<<<

$

K ,2 C T

GT
z��������
%

C
F

Yc<<<<<<<

F T
:E�������

in AdjpTq.

Proof. Existence: We defineK byKB � pGB,GεBq (check it is a T-algebra) andKpg : B ÝÑ Cq �
Gg : pGB,GεBq ÝÑ pGC,GεCq (check it is a homomorphism).

Clearly, GTK � G; and

� KFA � pGFA,GεFAq � pTA, µAq � FTA,
� KF pf : A ÝÑ A1q � GFf � Tf � FTf .

Uniqueness: Suppose we have another functor K 1 : D ÝÑ C T satisfying GTK 1 � G and
K 1F � FT. Then we can write K 1B � pGB, βBq for some algebra structure βB : GFGB ÝÑ GB
(this is because of the first equationK 1 satisfies). AsK 1pg : B ÝÑ Cq � Gg : pGB, βBq ÝÑ pGC, βCq,
β must be a natural transformation β : GFG ÝÑ G. We also know that βFA � µA � GεFA, since
K 1F � FT.
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Now, for any B, the diagram

GFGFGB
GFGεB ,2

GεFGB�µGB�βFGB

��

GFGB

βB

��
GFGB

GεB

,2 GB

must commute by naturality of β. However, it would commute if we substitue GεB for βB , and
GFGεB is (split) epic by one of the triangular identities. So βB � GεB for all B, and K 1 � K.

�

There is also an initial object in AdjpTq.

C Kleisli Category

Given an adjunction C
F ,2
K D
G

lr inducing T on C , we could consider the full subcategory D 1

on objects of the form FA. Then morphisms FA ÝÑ FB in D 1 must correspond to morphisms
A ÝÑ TB in C . We can use this idea to construct a “smallest” adjunction inducing T.

Definition: Given a monad T � pT, η, µq, the Kleisli category CT is defined by:
ob CT � ob C ;

Morphisms A ,2/o/o/o B in CT are morphisms A ÝÑ TB in C . The identity morphism A
1A ,2/o/o/o A

in CT is ηA : A ÝÑ TA. The composite of two morphisms A
f ,2/o/o/o B and B

g ,2/o/o/o C in CT is

A
f ,2TB

Tg ,2TTC
µC ,2TC.

We check that this really is a category:

A
f ,2/o/o/o B

1B ,2/o/o/o B � A
f ,2 TB

TηB ,2

1TB �'

TTB

µB

��
TB

using p1q.

A
1A ,2/o/o/o A

f ,2/o/o/o B � A
f ,2

ηA

��

TB

ηTB

��

1TB

�'
TA

Tf ,2 TTB µB
,2 TB

using naturality of η and p2q. Given A
f ,2/o/o/o B

g ,2/o/o/o C
h ,2/o/o/o D , we have

phgqf � A
f ,2

pgfq
$,RRRRRRRR TB

Tg ,2

T phgq

$,l j h e c a _ ] [ Y V T R

TTC
TTh ,2

µC

��

TTTD

µTD

��

TµD ,2 TTD

µD

��
TC

Th
,2 TTD µD

,2 TD

� hpgfq

using naturality of µ and p3q.

Proposition: (Kleisli) There exists an adjunction C
FT ,2
K CT
GT

lr inducing T.
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Proof. We define FT by FTA � A and FTpA
f ,2B q � A

f ,2B
ηB ,2TB . This clearly

preserves identities; we check it preserves composition. Given A
f ,2B

g ,2C in C ,

pFTgqpFTfq � A
f ,2

gf �%

B
ηB ,2

g

��

TB

Tg

��
C ηC

,2 TC

TηC

��

1TC

�'
TTC µC

,2 TC

� FTpgfq

using naturality of η and p1q.

We set GTA � TA and GTpA
f ,2/o/o/o B q � TA

Tf ,2TTB
µB ,2TB . Then

GTpA
1A ,2/o/o/o Aq � TA

TηA ,2

1TA �'

TTA

µA

��
TA

� 1TA

using p1q, and

GTpA
f ,2/o/o/o B

g ,2/o/o/o C q � TA
Tf ,2

GTpfq �'G
G

G
G TTB

µB

��

TTg ,2 TTTC

µTC

��

TµC ,2 TTC

µC

��
TB

Tg
,2

GTpgq

29T X [ _ c f jTTC µC
,2 TC

� GTpgqGTpfq

using naturality of µ and p3q.
We have GTFTA � TA and

GTFTpA
f ,2B q � TA

Tf ,2 TB
TηB ,2

1TB �'

TTB

µB

��
TB

� Tf.

So GTFT � T . We take η as the unit of the adjunction pFT % GTq. The counit ε is defined by

TA
εA ,2/o/o/o A � 1TA. Check that this is a natural transformation FTGT ÝÑ 1CT .

For the triangular identities, we have

GTA
ηGTA ,2 GTFTGTA

GTεA

��
GTA

� TA
ηTA ,2

1TA

��444444444444444 TTA

T1TA

��
TTA

µA

��
TA
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using p2q, and

FTA
FTηA ,2/o/o/o FTGTFTA

εFTA

�� �O
�O
�O

FTA

� A
ηA ,2

ηA

�'

TA
ηTA ,2

1TA

��

TTA

T1TA

��
TTA

µA

��
TA

� A
1A ,2/o/o/o A

also using p2q. Finally GTεFTA � GTp1TAq � TTA
T1TA ,2TTA

µA ,2TA � µA, so the adjunc-
tion pFT % GTq induces T. �

27 Proposition: (“Kleisli is initial”)
The Kleisli adjunction is initial in AdjpTq.

Proof. Given

D

G

��
%

C

F

LR

inducing T, we define H : CT ÝÑ D by HA � FA and HpA
f ,2/o/o/o B q �

FA
Ff ,2FGFB

εFB ,2FB . It is easy to see that H preserves identities, and more generally
that HFTpfq � Ff for any f P mor C . We check that H preserves composition: Consider

A
f ,2/o/o/o B

g ,2/o/o/o C . Then

Hpgfq � FA
Ff ,2 FGFB

FGFg

FTg
,2

εFB

��

FGFGFC
FGεFC

FµC

,2

εFGFC

��

FGFC

εFC

��
FB

Fg
,2 FGFC εFC

,2 FC

� HpgqHpfq

using naturality of ε twice. Also GHA � GFA � TA � GTA, and

GHpA
f ,2/o/o/o B q � GFA

GFf ,2GFGFB
GεFB ,2GFB

� TA
Tf ,2TTB

µB ,2TB

� GTpfq.

So H is a morphism in AdjpTq.
For uniqueness, suppose H 1 : CT ÝÑ D is a morphism of AdjpTq. Since H 1FT � F , we have

H 1A � FA for all A (i.e. H 1A � HA). Any morphism A
f ,2/o/o/o B in CT can be rewritten as

A
FTf ,2/o/o/o TB

εB ,2/o/o/o B , and H 1 maps the counit εB of the Kleisli adjunction to the counit εFB of

pF % Gq3, so H 1f must be the composite FA
Ff ,2FTB

εFB ,2FB , i.e. H 1 � H. �

The Kleisli category CT is equivalent to the full subcategory of C T given by the free T-algebras
(Exercise).

Since FT is surjective on objects and (as a left adjoint) preserves coproducts, it follows that CT
has coproducts if C has them. But in general, it has few other limits and colimits. In constrast:

D Limits and Colimits of Algebras

28 Proposition: (“Limits and colimits of algebras”)

i) GT : C T ÝÑ C creates all limits which exist in C .
ii) If C has colimits of shape J , then GT creates colimits of shape J iff T preserves them.

3Recall how the correspondance works: both correspond to 1TB : TB ÝÑ TB.



D LIMITS AND COLIMITS OF ALGEBRAS 41

Proof. i) Consider a diagram D : J ÝÑ C T. (We write G for GT). Write Dpjq �
pGDpjq, δjq with δj : TGDpjq ÝÑ GDpjq. Suppose pλj : L ÝÑ GDpjqqjPob J is a limit
for GD in C . Then pTλj : TL ÝÑ TGDpjqq is a cone over TGD, and the composites

TL
Tλj ,2TGDpjq

δj ,2GDpjq form a cone over GD.

TL
Tλj

v�uuuuuuuuu
Tλj1

�(IIIIIIIII

TGDpjq
TGDα

,2

δj

��

TGDpj1q

δj1

��
GDpjq

GDα
,2 GDpj1q

So there is a unique β : TL ÝÑ L such that

TL
β ,2

Tλj

��

L

λj

��
TGDpjq

δj

,2 GDpjq

(†)

commutes for all j. We want to show that β gives L a T-algebra structure, i.e. we have
to show βηL � 1L and βTβ � βµL. Both of these conditions mean showing that two
morphisms with codomain L are equal, so by the limit property of L, it is enough to show
that their composites with λj are equal for each j.

We have

L

ηL

��

λj ,2 GDpjq

ηGDpjq

��
1

x�

TL

β

��

Tλj

,2 TGDpjq

δj

��
L

λj

,2 GDpjq

so λjβηL � λj for all j, and

λjβTβ � δjTλjTβ by (†)
� δjTδjTTλj by T(†)
� δjµGDpjqTTλj by δj being T-algebra structure

� δjTλjµL by naturality of µ

� λjβµL by (†).

So pL, βq is a T-algebra, and the λj are T-algebra homomorphisms, by (†). To show that
pλj : pL, βq ÝÑ Dpjqq is a limit for D in C T, consider any cone pνj : pN, γq ÝÑ Dpjqq over
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D in C T.

TN
Tνj

v�uuuuuuuuu
Tνj1

�)JJJJJJJJJ

γ

��

TGDpjq
TGDα

,2

δj

��

TGDpj1q

δj1

��

N
νj

v�uuuuuuuuu
νj1

�)JJJJJJJJJJ

GDpjq
GDα

,2 GDpj1q

Then pνj : N ÝÑ GDpjqq is a cone in C , so there is a unique factorisation n : N ÝÑ L
over pλj : L ÝÑ GDpjqq in C , and again composing with the λj shows that n is in fact a
morphism in C T.

The same argument shows that any cone over D whose image in C is a limit of GD
is indeed a limit cone in C T.

ii) The proof of ð is exactly like i), except that we need to know that T (and TT ) preserve
the colimit of GD. For ñ, we note that T is the composite GTFT, and FT preserves
colimits because it is a left adjoint.

�

Because of this proposition, it would be useful to know when the comparison functor K is part
of an equivalence of categories.

E Monadicity

Definition: An adjunction pF % Gq is monadic if K is part of an equivalence. We also say
G : D ÝÑ C is a monadic functor if it has a left adjoint and the adjunction is monadic.

Lemma: Monadic functors reflect isomorphisms.

Proof. If G : D ÝÑ C is monadic, then there is F % G such that G � GTK. As K is part
of an equivalence, it is enough to show that GT : C T ÝÑ C reflects isos (for any monad T). Given
f : pA,αq ÝÑ pB, βq in C T with f : A ÝÑ B an iso in C , then f�1 is also a morphism of T-algebras:

αTf�1 � f�1fαTf�1 � f�1βTfTf�1 � f�1β.

�

So this already tells us that some functors are not monadic.

Example: The forgetful functor Poset ÝÑ Set doesn’t reflect isos.

f :

c

====

����

a b

ÝÑ

fpcq

fpbq

fpaq

is an iso in Set but not in Poset.

But to properly characterise monadic functors, we need more. The main idea is that algebras
are coequalisers of morphisms between free algebras. We will make this more precise.
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Definition: a) A reflexive pair in C is a parallel pair A
f ,2
g

,2B for which there exists

r : B ÝÑ A with fr � gr � 1B (such an r is called a common splitting). A reflexive
coequaliser is a coequaliser of a reflexive pair.

b) A split coequaliser diagram is a diagram of the form

A
f ,2
g

,2 B
h ,2

t

Ze C

s

Ze

satisfying hf � hg, hs � 1C , gt � 1B and ft � sh. Recall from Example Sheet 2 that
this makes h into the coequaliser of f and g.

c) Given a functor G : D ÝÑ C , a parallel pair A
f ,2
g

,2B in D is G-split if there exists a

split coequaliser diagram in C :

GA
Gf ,2
Gg

,2 GB
h ,2

t

]g C

s

[f

29 Examples: (“Split coequalisers”)

Given an adjunction C
F ,2
K D
G

lr inducing pT, η, µq and a T-algebra pA,αq,

TTA
Tα ,2
µA

,2 TA
α ,2

ηTA

]g A

ηA

[f

is a split coequaliser diagram. So FGFA
Fα ,2
εFA

,2FA is G-split.

Similarly

GFGFGB
GFGεB ,2
GεFGB

,2 GFGB
GεB ,2

ηGFGB

el GB

ηGB

_h

is a split coequaliser diagram.

30 Lemma: (“T-algebras are coequalisers”)
Given a monad T on C and an algebra pA,αq, the structure map α : pTA, µAq ÝÑ pA,αq is a
coequaliser in C T.

Proof. Consider the diagram

TTTA
TTα ,2
TµA

,2

µTA

��

TTA

µA

��

Tα ,2 TA

α

��
TTA

Tα ,2
µA

,2 TA α
,2 A

in C T. Here the bottom row is a split coequaliser in C and Tα is (split) epic. Given any
f : pTA, µAq ÝÑ pB, βq in C T with fTα � fµA, we get a unique g : A ÝÑ B in C satisfying
gα � f . Then as Tα is epic, g is an algebra homomorphism, so pA,αq is a coequaliser in C T. �

Notice that pTA, µAq � FTGTpA,αq. So the “primeval” idea behind monadicity theorems is

that we recognise a monadic adjunction C
F ,2
K D
G

lr by the fact that for any B P ob D ,

FGFGB
εFGB ,2
FGεB

,2 FGB
εB ,2 B
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is a coequaliser4. This diagram is called the standard free presentation of B.

31 Theorem: (Precise Monadicity Theorem)
A functor G : D ÝÑ C is monadic if and only if

i) G has a left adjoint and
ii) G creates coequalisers of G-split parallel pairs.

32 Theorem: (Crude Monadicity Theorem)
Consider G : D ÝÑ C such that

i) G has a left adjoint,
ii) G reflects isomorphisms,

iii) D has and G preserves reflexive coequalisers.

Then G is monadic.

Proof. (Precise ñ) If G is monadic, it has a left adjoint by definition. For ii) it is sufficient to

show that GT : C T ÝÑ C creates coequalisers of GT-split pairs. If pA,αq
f ,2
g

,2pB, βq is a parallel

pair in C T and A
f ,2
g

,2B
h ,2

t

Xc C

s

Yc is a split coequaliser in C , then TA
Tf ,2
Tg

,2TB
Th ,2TC is also a

coequaliser. So as hβTf � hfα � hgα � hβTg, we get a unique γ : TC ÝÑ C such that

TB
Th ,2

β

��
p:q

TC

γ

��
B

h
,2 C

(†)

commutes.
To show that pC, γq is a T-algebra, i.e. that γηC � 1C and γTγ � γµC , it is enough to show

γηCh � h and γTγTTh � γµCTTh, as h and TTh are coequalisers. These two equations follow
from naturality of η and µ, (†) and the fact that pB, βq is a T-algebra. Then h : pB, βq ÝÑ pC, γq
is the coequaliser of f and g in C T (proof as in previous lemma).

(Precise ð and Crude) We have

D
G

�#<<<<<<<

$

K ,2 C T

GT
z��������
%

C
F

Yc<<<<<<<

F T
:E�������

We will construct a left adjoint L : C T ÝÑ D for K and the unit and counit of L % K and show
that they are isos.

Given a T-algebra pA,αq, form the coequaliser

FGFA
Fα ,2
εFA

,2 FA
lpA,αq ,2 LpA,αq

in D . We can do this as pFα, εFAq is a reflexive pair with common splitting FηA, so by (Crude iii)
it has a coequaliser, or because it is G-split (see Example 29 “Split coequalisers”) so by (Precise
ii) it has a coequaliser.

4It is G-split: see the “split coequalisers” Example 29.
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Any algebra homomorphism F : pA,αq ÝÑ pB, βq induces two commutative squares

FGFA
Fα ,2
εFA

,2

FGFf

��

FA

Ff

��
FGFB

Fβ ,2
εFB

,2 FB

and hence a unique morphism Lpfq : LpA,αq ÝÑ LpB, βq. So L is a functor.
To get the counit θ : LK ÝÑ 1D , consider B P ob D . Then KB � pGB,GεBq, so we have a

coequaliser

FGFGB
FGεB ,2
εFGB

,2 FGB ,2

εB
�(IIIIIIIIII LKB

θB

��
B

But εB has equal composite with this pair, so we get a morphism θB : LKB ÝÑ B.
In fact, pFGεB , εFGBq is G-split (see Example 29 “Split coequalisers”), so either by (Precise

ii) or by (Crude ii and iii)5 we deduce that θB is an isomorphism (i.e. εB is also a coequaliser for
this pair). Naturality of θ follows from it being an iso and LKf being uniquely determined by the
coequaliser property.

For the unit θ : 1C T ÝÑ KL, we have KLpA,αq � pGLpA,αq, GεLpA,αqq and

pGFGFA, µTAq
GFα ,2
GεFA

,2 pGFA,µAq
α ,2 pA,αq

is a coequaliser in C T by the “T-algebras are coequalisers” Lemma 30. So via

GFGFA
GFα ,2
GεFA

,2 GFA
α ,2

GlpA,αq !*MMMMMMMMMM A

φpA,αq

��
GLpA,αq

we get a homomorphism φpA,αq : pA,αq ÝÑ pGLpA,αq, GεLpA,αqq. (Note that GlpA,αq is an algebra
morphism by naturality of Gε.) To show that φpA,αq is an iso, it is enough to show that

GFGFA
GFα ,2
GεFA

,2 GFA
α ,2 A

is a coequaliser in C . But

FGFA
Fα ,2
εFA

,2 FA
lpA,αq ,2 LpA,αq

is a coequaliser by definition, so using (Precise ii), G creates coequalisers of G-split pairs, so it
also preserves them, or using (Crude iii) G preserves reflexive coequalisers. Thus φ is a natural iso
(naturality follows as for θ). �

Exercise: Check that θ and φ satisfy the triangular identities6.

33 Examples:

a) For any category D whose objects are sets A equipped with algebraic operations Ak ÝÑ A
satisfying equations, and whose morphisms are homomorphisms, the forgetful functor
G : D ÝÑ Set is monadic iff it has a left adjoint. (For infinitary structure, the free functor
may not exist, e.g. for complete Boolean algebras; but for finitary structure it does, c.f.
Example Sheet 3 Question 6.) This can be proved using the Precise Monadicity Theorem,
c.f. Example Sheet 3 Question 9.

5It is also a reflexive pair.
6We don’t actually need it for this proof, but they do, and we’ll need it later.
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Remark: For a finitary algebraic category C , the forgetful functor C ÝÑ Set satisfies
the hypotheses of the Crude Monadicity Theorem.

b) Any reflection is monadic: this can be proved directly (see Example Sheet 3 Ques-
tion 7), but also follows from the Precise Monadicity Theorem. If G : D ÝÑ C is the

inclusion of a (full) reflective subcategory, and A
f ,2
g

,2B is a G-split pair with splitting

A
f ,2
g

,2 B
h ,2

t

Ze C

s

Ze in C , then t P mor D (as D is a full subcategory), and so ft � sh

is in D . We have shsh � sh, so sh is an idempotent in D . But an idempotent e splits
iff the pair pe, 1dom eq has an equaliser (Exercise, see Example Sheet 2 Question 2), so
the splitting ps, hq in C can be obtained by the equaliser of psh, 1Bq. But D is closed
under all limits which exist in C , so (up to isomorphism) h, s and C also live in D (i.e.
G creates coequalisers of G-split pairs).

c) Let C � AbGp be the full subcategory of torsion-free abelian groups. The inclusion
C ÝÑ AbGp has a left adjoint A ÞÝÑ A{At (where At is the subgroup of elements of finite
order in A), so it is monadic by b). Also, the forgetful functor AbGp ÝÑ Set is monadic
by a).

However, the composite adjunction C ,2AbGplr ,2Setlr isn’t monadic since it in-

duces the same monad on Set as AbGp ,2Setlr .Thus monadicity is not stable under
composition. (Note that the hypotheses of the Crude Monadicity Theorem are stable
under composition.)

In general, given an adjunction

D

G

��
%

C

F

LR

where D has (at least) reflexive coequalisers, we can

construct the “monadic tower”

D

G

��

%

K

��/////////////
K1

#+PPPPPPPPPPPP

%

%

...

pC TqS
L1

ckPPPPPPPPPPPP

GSw�xxxxxx

C T

L

S[/////////////
F S 7Axxxxxx

GTy�||||||

C

F

LR

F T 9C||||||

where T is the monad induced by pF % Gq, K is the comparison functor to the Eilenberg-Moore
adjunction, L is the left adjoint of K constructed as in the proof earlier, S is the monad induced
by pL % Kq, and so on.

Definition: We say pF % Gq has monadic length n if this process produces an equivalence after
n steps.

Examples: a) The forgetful functor G : Top ÝÑ Set has a left adjoint D, but has monadic
length 8, since GD � 1Set, η � µ � 11Set

and so all categories in the monadic tower are
isomorphic to Set.

b) An equivalence of categories has monadic length 0, and a monadic adjunction has monadic
length 1.

c) The composite adjunction of torsion-free abelian groups in sets from Example 33c) above
has monadic length 2. Another example of the same form is given by the reflective
subcategory of Stone spaces (compact 0-dimensional spaces) inside the category KHaus
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of compact Hausdorff spaces, which itself is monadic over Top (meaning the forgetful
functor is monadic). The composite adjunction will again have monadic length 2.



CHAPTER 5

Abelian Categories

A Pointed Categories, Kernels and Cokernels

Definition: A zero object is an object 0 in a category C which is both initial and terminal. A
zero morphism 0: A ÝÑ B is the unique morphism factoring over the zero objectA ÝÑ 0 ÝÑ B.1

A category with a zero object is called pointed.

Examples: The categories of pointed sets Set�, monoids Mon, groups Gp, abelian groups AbGp,
R-modules R-Modare all pointed.

Notice that when C is locally small and pointed, the functor C p�,�q : C op � C ÝÑ Set factors
over the category of pointed sets. We then say that C is enriched in Set�.

Lemma: If C is enriched in Set� and I P ob C , the following are equivalent:

(i) I is initial;
(ii) I is terminal;

(iii) 1I � 0: I ÝÑ I.

Proof. Clearly (i) ñ (iii) and (ii) ñ (iii). Moreover, (iii) implies that for any f : I ÝÑ A we
have

I
f ,2A � I

1I ,2I
f ,2A � I

0 ,2I
f ,2A � I

0 ,2A

So (iii) ñ (i). Similarly, (iii) ñ (ii). �

Definition: Given f : A ÝÑ B in a pointed category C , the kernel of f is the pullback of 0 ÝÑ B
along f :

Ker f � ,2ker f ,2

��

A

f

��
0 ,2 B

The cokernel of f is the pushout

A
f ,2

��

B

coker f
_��

0 ,2 Coker f.

(We write arrows which are kernels or cokernels as indicated.)

Notice that when C is pointed, any morphism 0 ÝÑ A is a (split) mono. So as pullbacks
preserve monos, every kernel is a mono. (Similarly every morphism B ÝÑ 0 is a split epi.2)

Definition: A normal monomorphism is a morphism which occurs as the kernel of some mor-
phism. A normal epimorphism is a morphism which occurs as the cokernel of some morphism.

1So composing anything with 0 gives 0.
2We won’t do all the dual results in what follows, you can supply them yourself.

48
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Lemma: Any normal mono is a regular mono.

Proof. The morphism k : K ÝÑ A is the kernel of f : A ÝÑ B if and only if it is the equaliser

of A
f ,2
0

,2B . �

Examples: In Gp, every mono is regular, but a mono K ÝÑ G is normal iff K is a normal subgroup
of G. But every epimorphism f : G ÝÑ H is normal, since if f is surjective then H � G{Ker f .

In Set�, every mono is normal, since if f : A ÝÑ B is injective, then it is the kernel of
B ÝÑ B{� (where b1 � b2 ô b1 � b2 or tb1, b2u � Imf). But not every epi in Set� is nor-
mal.

34 Lemma: (“A normal mono is the kernel of its cokernel.”)
Let C be pointed with cokernels. Then f : A ÝÑ B is a normal mono in C iff f � kerpcoker fq.

Proof. ð trivial. ñ Suppose f � kerpg : B ÝÑ Cq. Let q � coker f . Then as gf � 0,
g factors as hq.

E
e

�%@@@@l

y�
A

� ,2 f ,2 B
g ,2

q � �%
AAA C

D
h

9D

Given e : E ÝÑ B with qe � 0, then also ge � hqe � 0, so e factors uniquely as fl. Then (as
qf � 0) this implies that f � ker q. �

Lemma: Let C be pointed. Then any mono has a kernel, and that kernel is 0: 0 ,2 ,2A .

Proof. If f : A ,2 ,2B has a kernel, then we see from

Ker f ,2 ,2
��

��

A
��
f

��
0 ,2 ,2 B

that Ker f ,2 ,20 is a mono since pullbacks preserve monos. But Ker f ,2 ,20 is always split
epic, so here it is an isomorphism.

Moreover, for any mono f , if for any g : C ÝÑ A we have fg � 0, then as f is monic, g � 0,
so indeed

0 ,2 A
��
f

��
0 ,2 B

is a pullback. �

35 Lemma: (“kernel of zero”)
The kernel of 0: A ÝÑ B is 1A.

Proof. Exercise. �
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Recall that the kernel pair of f : A ÝÑ B is the pullback of f along itself:

Rpfq
π2 ,2

π1

��

A

f

��
A

f
,2 B

Lemma: Let C be pointed with pullbacks. Then given f : A ÝÑ B, we have ker f : Ker f ÝÑ A �

Kerπ1
kerπ1 ,2Rpfq

π2 ,2A .

Proof. Use “pullback composition” (Question 10 on Sheet 1) on the two pullbacks

Kerπ1
kerπ1 ,2

��

Rpfq

π1

��

π2 ,2 A

f

��
0 ,2 A

f
,2 B.

�

36 Lemma: (“Kernels and pullbacks”)
Let C be pointed with kernels. Consider

K
� ,2 f ,2

k

��
p1q

A

a

��

g ,2

p2q

B

b

��
K 1 � ,2

f 1
,2 A1

g1
,2 B1

where f � ker g and f 1 � ker g1.

(i) If b is a mono, then (1) is a pullback.
(ii) If (2) is a pullback, then k is an iso.

Proof. (i) Consider h1 : D ÝÑ A and h2 : D ÝÑ K 1 such that ah1 � f 1h2. Then
bgh1 � g1ah1 � g1f 1h2 � 0, so as b is a mono, gh1 � 0. So h1 factors uniquely over

the kernel of g: D
h1 ,2

l !*MMMMMM A

K
1 4= f

4=qqqqq
. As f 1 is monic, also kl � h2, so (1) is a pullback.

(ii) f 1 : K 1 ÝÑ A1 satisfies g1f 1 � 0 � b�0. So as (2) is a pullback, there is a unique
h : K 1 ÝÑ A such that ah � f 1 and gh � 0. Then there is a unique l : K 1 ÝÑ K such that
fl � h, as f � ker g. Then f 1 � ah � afl � f 1kl, so as f 1 is monic, kl � 1K1 . It remains
to show lk � 1K . For this, consider gflk � 0 � gf1K and aflk � ahk � f 1k � af1K .
So as (2) is a pullback, flk � f1K , but f is monic, so lk � 1K .

�

Alternative proof. Consider the cube

0 ,2

��

B

b

��

K

9D}}}}}� ,2
f

,2

k

��

A
g

9C||||

a

��

0 ,2 B1

K 1 � ,2
f 1

,2

9D

A
g1

9D}}}}
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in which the top and bottom side are pullbacks, as f � ker g and f 1 � ker g1. If b is a mono, the
back is also a pullback, so as “pullbacks of pullbacks are pullbacks” (see Example Sheet 2), the
front square (which is (1)) is also a pullback, which prove (i). If (ii) is a pullback, then “pullbacks
of pullbacks are pullbacks” implies that the left-hand square is a pullback too, which makes k an
isomorphism. �

B Additive Categories

Consider two morphisms A
f ,2
g

,2B between abelian groups A and B. We can define the

“pointwise sum” f � g : A ÝÑ B by pf � gqpaq � fpaq � gpaq. Then as B is abelian, f � g is also
a group homomorphism. So the homset AbGppA,Bq has an abelian group structure.

Definition: A locally small category A is enriched in abelian groups if the functor

A p�,�q : A op �A ÝÑ Set

factors through the forgetful functor AbGp ÝÑ Set.

I.e. A is enriched in abelian groups if each homset A pA,Bq is an abelian group, and compo-
sition

A pA,Bq �A pB,Cq ÝÑ A pA,Cq

pf, gq ÞÝÑ gf

is “a group homomorphism in each variable”, i.e.

gpf1 � f2q � gf1 � gf2 and

pg1 � g2qf � g1f � g2f.

Some people call such an A preadditive or an Ab-category.

Examples: AbGp, R-Mod, AbGpt.f. (torsion free abelian groups). Also “abelian topological groups”
AbpTopq. But not Gp! A ring R is a preadditive category with just one object.

37 Lemma: (“preadditive ñ product=biproduct”)
If A is enriched in abelian groups, and A,B,C P ob A , the following are equivalent:

(i) There exists Cπ1

t}qqqqqq π2

!*MMMMMM

A B

making C into a product A�B.

(ii) There exists A

ι1 !*MMMMMM B

ι2t}qqqqqq

C

making C into a coproduct A�B.

(iii) There exist morphisms A
ι1

,2C
π1lr π2 ,2B

ι2
lr satisfying π1ι1 � 1A, π2ι2 � 1B, π2ι1 � 0,

π1ι2 � 0 and ι1π1 � ι2π2 � 1C .

Proof. (i) ñ (iii): Take π1, π2 to be the given projections, and take ι1 and ι2 to be the
morphisms defined by the first four equations. To verify that ι1π1 � ι2π2 � 1C , it is enough to
show they have the same composite with π1 and π2. Now π1pι1π1 � ι2π2q � π1ι1π1 � π1ι2π2 �
π1 � 0 � π11C , and π2pι1π1 � ι2π2q � 0� π2 � π21C .

(iii) ñ (i): We want to show that A C
π1lr π2 ,2B is a product, i.e. given f : D ÝÑ A and

g : D ÝÑ B, we want to find a unique h : D ÝÑ C such that π1h � f and π2h � g.
If such an h exists, then h � 1Ch � pι1π1� ι2π2qh � ι1f � ι2g, so then it is unique. Moreover,

π1pι1f � ι2gq � f � 0g � f and π2pι1f � ι2gq � 0� g � g, so such an h exists.
Dually (ii) ô (iii). �

Notice that the conditions in (iii) make ι1, ι2 split monic and π1, π2 split epic.
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Definition: Given A, B in a category A enriched in abelian groups, we call pC, π1, π2, ι1, ι2q
satisfying the conditions in the previous lemma the biproduct of A and B. We usually write
C � A`B.

38 Remark: (“zero morphism”)
If A is enriched in abelian groups and pointed, the composite A ÝÑ 0 ÝÑ B must be the additive
0 P A pA,Bq, as A pA, 0q �A p0, Bq ÝÑ A pA,Bq is a group homomorphism in each variable.

Lemma: If pA ` B, π1, π2, ι1, ι2q is a biproduct and A is pointed, then ι1 � kerπ2, ι2 � kerπ1,
π1 � coker ι2 and π2 � coker ι1.

Proof. We already know π2ι1 � 0 and π1ι2 � 0. Consider A
ι1 ,2 A`B

π2 ,2 B

D f

3;nnnnnn

with

π2f � 0. Then f � pι1π1�ι2π2qf � ι1π1f�0, so setting h � π1f we have f � ι1h. For uniqueness
consider h : D ÝÑ A such that f � ι1h. Then ι1h � f � ι1π1f , but ι1 is (split) monic, so h � π1f .

The other statements are similar or dual. �

Definition: An additive category is a pointed category A which is enriched in abelian groups
and has biproducts.

Notice that this definition is self-dual, i.e. A is additive iff A op is.

Examples: AbGp, R-Mod, AbGpt.f., AbpTopq.

We will write A

�
f
g

	
,2B � C for the morphism induced by f : A ÝÑ B and g : A ÝÑ C, and

B � C
ph,kq ,2D for the morphism induced by h : B ÝÑ D and k : C ÝÑ D.

39 Proposition: (“Additive structures are unique.”)
Suppose A is locally small, pointed and has binary products. Then any additive structure on (the
homsets of) A is unique.

Proof. As soon as A has an additive structure, any product A � B becomes a biproduct
A`B by the “products=biproducts” Lemma 37, so 1A`B � ι1π1 � ι2π2.

Now consider A
f ,2
g

,2B . Then we have

A
p 1

1 q ,2 A`A
pf,gq ,2 B � A

p 1
1 q ,2 A`A

1 ,2 A`A
pf,gq ,2 B,

so pf, gq

�
1
1



� pf, gqpι1π1 � ι2π2q

�
1
1



� pf, gqι1π1

�
1
1



� pf, gqι2π2

�
1
1



� f � g. So addition

in the homsets is completely determined by the “product-coproduct” structure of A . Since the 0
must be A ÝÑ 0 ÝÑ B (see Remark 38 “zero morphism”) and if an inverse �f of f exists, it is
unique, the additive structure on A is unique. �

Notation: In an additive category, any morphism A ` B ÝÑ C `D is determined by four mor-
phisms f : A ÝÑ B, g : A ÝÑ D, h : B ÝÑ C and k : B ÝÑ D. We write

A`B

�
f h
g k

	

,2 C `D.
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Then composition of such morphisms is matrix multiplication:

A

�
f
g

	
,2 B ` C

ph,kq ,2 D � ph, kqpι1π1 � ι2π2q

�
f
g



� hf � kg.

It now makes sense to look at functors which preserve this additive structure:

Definition: Let A , B be additive categories. A functor F : A ÝÑ B is additive if its action on
each homset

A pA,Bq ÝÑ BpFA,FBq

f ÞÝÑ Ff

is a group homomorphism.

Remark: Any additive functor preserves the zero object, which is very closely intertwined with
the additive structure (recall “zero morphism” Remark 38). To show this, notice that the zero
object is the only object whose identity morphism is the zero morphism. So as an additive functor
F preserves identities (as it is a functor) and the zero morphism (as it is additive), F p0q is also a
zero object.

40 Proposition: (“Additive functors preserve biproducts.”)
Let F : A ÝÑ B be a functor between additive categories. The following are equivalent:

(i) F is additive.
(ii) F preserves biproducts.

(iii) F preserves finite products.
(iv) F preserves finite coproducts.

Proof. (i) ñ (ii): By the definition of biproducts, we see that if F preserves � and 0,

FA
F pι1q

,2F pA`Bq
F pπ1qlr F pπ2q ,2F pBq

F pι2q
lr

satisfies the conditions making F pA`Bq into a biproduct of F pAq and F pBq.

(ii) ñ (i): Given A
f ,2
g

,2B , the sum f � g is A
p 1

1 q ,2A`A
pf,gq ,2B . So

F pfq � F pgq � FA
p 1

1 q ,2FA` FA � F pA`Bq
pFf,Fgq

�
F pf,gq

,2FB � F pf � gq.

(iii) ñ(ii) and (iv) ñ (ii) by the “products=biproducts” Lemma 37.
For (ii) ñ(iii) and (ii) ñ(iv), we just need to show that F preserves the zero object (i.e. the

product of the empty family and the coproduct of the empty family). For this it suffices to show
that F p0q is terminal in B. For any B P ob B, there is always at least 0 : B ÝÑ F p0q, as B is

additive. Given B
f ,2
g

,2F p0q , we have

f � g � B

�
f
g

	
,2F p0q ` F p0q

π1�π2 ,2F p0q.

But F p0q ` F p0q � F p0 ` 0q with π1 � F pπ1q and π2 � F pπ2q. As 0 is terminal in A , we have

π1 � π2 : 0` 0 ÝÑ 0. So f � g � pπ1 � π2q

�
f
g



� pF pπ1q � F pπ2qq

�
f
g



� 0

�
f
g



� 0. So f � g

and F p0q is terminal. �
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C Abelian Categories

Definition: A category A is abelian when it is additive, has kernels and cokernels and every
mono is normal and every epi is normal.

This definition is self-dual.

Examples: AbGp, R-Mod, AbGpfin of finite abelian groups. The functor category rC ,A s if (C is
small and) A is abelian. If C is preadditive and A abelian, the full subcategory AddpC ,A q �
rC ,A s of additive functors C ÝÑ A is abelian (see Example Sheet 4).

The category of abelian compact Hausdorff groups AbpHausq is abelian.
Gp, AbGpt.f. and AbpTopq are not abelian.

Lemma: In an abelian category every mono is the kernel of its cokernel and every epi is the
cokernel of its kernel.

Proof. Every mono is normal, and every normal mono is the kernel of its cokernel (Lemma 34).
�

Corollary: An abelian category is balanced.

Proof. As any mono is normal, it is in particular regular monic. So if f is a mono and an
epi, it is a regular mono and an epi and so an iso (Proposition 8 in Section 2C). �

41 Lemma: (“Preadditive equalisers via kernels”)

Let A be preadditive. Then the pair A
f ,2
g

,2B has an equaliser iff the kernel of f � g exists, and

then they coincide.

Proof. The equaliser of f and g and the kernel of f � g have the same universal property:
given h : C ÝÑ A, we have fh � gh ô pf � gqh � 0. �

Notice that in general normal ñ regular ñ strong ñ mono. This lemma shows that in a
preadditive category, normal ô regular; and in an abelian category we have normal ô mono, so
all steps coincide.

Corollary: Any abelian category is finitely complete and cocomplete.

Proof. As an abelian category A has biproducts and a zero object, it has all finite products.
So, using the “constructing limits” Theorem 7 from Section 2B, it suffices to show that A has

equalisers. Given A
f ,2
g

,2B , the kernel of f � g exists as A has kernels, so A has equalisers. �

42 Proposition: (“abelian: zero kernel implies mono”)
Let f : A ÝÑ B be a morphism in an abelian category A . The following are equivalent:

(i) f is a mono;
(ii) Ker f � 0;

(iii) for all g : C ÝÑ A in A with fg � 0, we have g � 0.

Proof. We have seen (i) ñ (ii), and (i) ñ (iii) is obvious. For (ii) ñ (iii), suppose fg � 0.
Then g factors through the kernel of f , which is 0, so g � 0 by the definition of a zero morphism.

Finally we prove (iii) ñ (i): Suppose fg � fh. Then fpg � hq � fg � fh � 0, so by (iii)
g � h � 0, giving g � h, and f is monic.

�
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43 Corollary:
In an abelian category, pullbacks reflect monos.

Proof. Consider a pullback square and take kernels to the left.

0 � Kerm
� ,2 ,2

��

P ,2

��

,2 m ,2 B

��
Ker f

� ,2 ,2 A
f

,2 C

By “kernels and pullbacks” Lemma 36(ii), Kerm � Ker f , so Ker f � 0. So by the previous lemma,
f is also a mono. �

Dually, in an abelian category g is epic ô coker g � 0, and pushouts reflect epis.

Lemma: Given a square

A
f ,2

g

��

B

h

��
C

k
,2 D

in an abelian category, consider

A

�
f
�g

	
,2 B ` C

ph,kq ,2 D.

Then

(i) ph, kq

�
f
�g



� 0 iff the square commutes.

(ii)

�
f
�g



� kerph, kq iff the square is a pullback.

(iii) ph, kq � coker

�
f
�g



iff the square is a pushout.

Proof. Exercise. �

Lemma: In an abelian category, pullbacks preserve epis.

Proof. Consider a pullback square
A

f ,2

g
��

B
h_��

C
k

,2 D

with h epic. Then
�
f
�g

	
� kerph, kq, but as

h � ph, kq p 1
0 q is epic, ph, kq is epic, so it is the cokernel of its kernel. So the square is a pushout,

and pushouts reflect epis, so g is epic. �

44 Proposition: (Image factorisation)
In an abelian category, any morphism factors as an epi followed by a mono.

Proof. Let f : A ÝÑ B be a morphism in A . Let k : K � ,2 ,2A be the kernel of f and

p : A � ,2I be the cokernel of k. Then as fk � 0, we have

K
� ,2 k ,2 A

f ,2

p � !)LLLLL B

I
i

5=rrrrrr
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We will show that i is monic by showing that ix � 0 implies x � 0. So consider x : X ÝÑ I with
ix � 0.

�
l

y�
h

��
K

� ,2 k ,2 A
f ,2

p
_��

B

X
x ,2 I

i

9D~~~~~~~~ c � ,2 �

r

LR

s

dl

We get a unique r such that r cokerx � i. Now as both p and c � cokerx are epis, cp is an epi and
so the cokernel of some h. Then fh � iph � rcph � 0, so h factors over the kernel of f by h � kl.

Finally ph � pkl � 0, so D!s such that spcpq � p. But as p is epic, this implies sc � 1, so c is
(split) monic. Then cx � 0 implies x � 0, so the kernel of i is zero and i is a mono.

Thus f factors as an epi followed by a mono. �

Proposition: Image factorisation is unique (up to iso) and functorial.

Proof. Suppose A
f ,2

p !)LLLLLL B

I
i

5=rrrrrr

with imonic. Using “Kernels and pullbacks” Lemma 36(i)

on

Ker p � ,2 ,2

��

A
p ,2 I

��
i

��
Ker f � ,2 ,2 A

f
,2 B

we see that the first square is a pullback and therefore Ker p � Ker f . So if p is epic, it is the
cokernel of its kernel, i.e. p � cokerpker fq. So the factorisation is unique.

Given

A
f ,2

a ��

B
b��

A1
f 1

,2 B1

, the kernel property of Ker f 1 and the cokernel property of p induce

A
p � ,2

a

��

I
� ,2 i ,2

��

B

b

��
A1

p1
� ,2 I 1

� ,2
i1

,2 B1

making both squares commute. �

We saw that p � cokerpker fq; dually i � kerpcoker fq.

Definition: Given f : A ÝÑ B in an abelian category, we call kerpcoker fq � i : I ,2 ,2 B the
image of f . Write I � Imf , i � im f .

So we can view Im: Arr A ÝÑ A as a functor, with natural transformations dom ÝÑ Im and
Im ÝÑ cod. (“Can view” means here that we’d have to actually choose a particular factorisation
out of the isomorphic possibilities.)

D Exact Sequences

Definition: A short exact sequence in an abelian category A is

0 ,2 A
f ,2 B

g ,2 C ,2 0
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where f � ker g and g � coker f .

In general a sequence A
f ,2B

g ,2C is exact at B if im f � ker g. We say

� � � ,2 An�1
fn�1 ,2 An

fn ,2 An�1
,2 � � �

is exact if it is exact at every (internal) An.

Lemma: Let A
f ,2

p � !)LLLLL B

q 
 !*MMMMM
g ,2 C

I
5= i

5=rrrrr
J

4= j

4=qqqqq

be the image factorisation of f and g. Then

A
f ,2B

g ,2C is exact iff 0 ,2I ,2 i ,2B
q � ,2J ,20 is a short exact sequence.

Proof. Exercise. �

Examples:

� 0 ,2A
f ,2B is exact (at A) iff f is monic.

� B
g ,2C ,20 is exact (at C) iff g is epic.

� 0 ,2A
f ,2B

g ,2C is exact iff f � ker g.

� A
f ,2B

g ,2C ,20 is exact iff g � coker f .

� 0 ,2A
ι1 ,2A`B

π2 ,2B ,20 is a short exact sequence.

In fact, it is split: A
ι1 ,2A`B
π1

dl
π2 ,2B
ι2

io

Definition: A short exact sequence 0 ,2A
f ,2B

g ,2C ,20 is split when g is split epic.

45 Lemma: (“abelian: split SES=biproduct”)

In an abelian A , if 0 ,2A
f ,2B

g ,2C ,2
s

ck 0 is a split short exact sequence then B � A`C.

Proof. Consider 1B � sg : B ÝÑ B. Then gp1B � sgq � g � gsg � 0, so 1B � sg factors over
the kernel of g. I.e. Dr : B ÝÑ A such that fr � 1B � sg. We will prove that

A
f

,2 B
rlr g ,2

C
s

lr

satisfies the conditions of a biproduct.
We already know gf � 0, gs � 1C and fr�sg � 1B . Now frf � p1B�sgqf � f�sgf � f , so

as f is monic, rf � 1A. Finally frs � p1B � sgqs � s� sgs � 0, so rs � 0. Thus B � A` C. �

Corollary: The notions of exact sequence and split short exact sequence in an abelian category
are self-dual. �

Definition: A functor F : A ÝÑ B between abelian categories is exact if it preserves short exact
sequences.

F is left exact if it preserves exact sequences of the form 0 ,2A
f ,2B

g ,2C .

F is right exact if it preserves exact sequences of the form A
f ,2B

g ,2C ,20.

Lemma: Any left (or right) exact functor is additive.
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Proof. Consider the (split) short exact sequence 0 ,2A
ι1 ,2A`B

π2 ,2B ,20. Then

the sequence 0 ,2FA
F pι1q ,2F pA`Bq

F pπ2q ,2FB is exact, but as F pπ2q is split epic, we in fact
get a split SES, i.e. F pA`Bq � FA` FB. �

Lemma: (i) F is left exact ô F is additive and preserves kernels ô F preserves finite
limits.

(ii) F is right exact ô F is additive and preserves cokernels ô F preserves finite colimits.
(iii) F is exact ô F is additive and perserves kernels and cokernels ô F preserves finite

limits and colimits.

Proof. Use “additive functors preserve biproduct” Proposition 40, “preadditive equalisers
via kernels” Lemma 41 and the “constructing limits” Theorem 7 (Section 2B). �

Corollary: A left exact functor between abelian categories is exact iff it preserves epimorphisms.

Proof. Exercise. �

E Diagram Lemmas

46 Theorem: (Short Five Lemma)
Let A be abelian. Consider a commutative diagram

0 ,2 K

k �

��

� ,2 f ,2 A

a

��

g � ,2 B

b�

��

,2 0

0 ,2 K 1 � ,2
f 1

,2 A1
g1

� ,2 B1 ,2 0

where both rows are exact, and k and b are isos. Then a is also an iso.

Proof. By “Kernels and pullbacks” Lemma 36(i), we see that the first square is a pullback.
As, in an abelian category, pullbacks reflect monos (Corollary 43), a is a mono.

Dually a is an epi, so a is an iso. �

47 Corollary: (Five Lemma)
In an abelian category A , consider the commutative diagram

A

a

��

,2 B

b

��

,2 C

c

��

,2 D

d

��

,2 E

e

��
A1 ,2 B1 ,2 C 1 ,2 D1 ,2 E1

with exact rows, a epic, b and d isos and e monic. Then c is an iso.

Proof. We write out the image factorisation of all horizontal morphisms:

A

_��

� ,2 I1

��

� ,2 ,2 B_��
�

_��

� ,2 I2

��

� ,2 ,2 C

��

� ,2 I3
� ,2 ,2

��

D_��
�

_��

� ,2 I4
� ,2 ,2

��

E_��

��
A1

� ,2 I 11
� ,2 ,2 B1 � ,2 I 12

� ,2 ,2 C 1 � ,2 I 13
� ,2 ,2 D1 � ,2 I 14

� ,2 ,2 E1

Looking at the first square, we see that I1 ÝÑ I 11 has to be an epi, as it is the second part of a
composite which is an epi. Similarly, looking at the second square, we see that it must be a mono.
So we find that I1 ÝÑ I 11 and I4 ÝÑ I 14 are isos are they are epis and monos, and so I2 ÝÑ I 12 and
I3 ÝÑ I 13 are isos as they are induced morphisms between cokernels resp. kernels of isomorphic
morphisms. So we can use the Short Five Lemma to see that c is an iso. �
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Corollary: In an abelian category, given a commutative diagram

0 ,2 K

k

��

f ,2 A

a

��

g ,2

p2q

B

b

��

,2 0

0 ,2 K 1
f 1

,2 A1
g1

,2 B1

where both rows are exact, k is an iso iff (2) is a pullback.

Proof. Proof not examinable as bookwork. It is on the example sheet however, so I would
expect you to have looked at it in the same way as for other example sheet questions.

We’ve already seen ð. For ñ, form the pullback of g1 and b and consider

0 ,2 K
� ,2 f ,2

�

��

�(IIIIII A

��

g � ,2

�%AAAA B ,2

��

AAAAA
AAAAA 0

Kerπ2
� ,2 ,2

v�uuuuu
P

π2 ,2

y�~~~~
B

by�}}}}

0 ,2 K 1 � ,2
f 1

,2 A1
g1

,2 B1

We know that Kerπ2 ÝÑ K 1 is an iso by “ð”, and the front triangle commutes as f 1 is monic. So
K ÝÑ Kerπ2 is also an iso. Now π2 is an epi as g is, so we can use the Short Five Lemma to see
that A ÝÑ P is an iso, i.e. (2) is a pullback. �

Remark: We could have used this together with the fact that pullbacks reflect monos in the image
factorsation proof to show that i is monic.

48 Lemma: (Pullback cancellation (on the left))
In an abelian category, consider

A
f ,2

a

��
p1q

B

b
_��

g ,2

p2q

C

c

��
A1

f 1
,2 B1

g1
,2 C 1

where the rectangle (1,2) and the square (1) are pullbacks and b is an epi. Then (2) is also a
pullback.

Proof. Proof not examinable as bookwork. It is on the example sheet however, so I would
expect you to have looked at it in the same way as for other example sheet questions.

Consider the kernels of a, b and c:

Ker a_��

��

f ,2 Ker b_��

��

g ,2 Ker c_��

��
A

f ,2

��

B
g ,2

b
_��

C

��
A1 ,2 B1 ,2 C 1

Then by “Kernels and pullbacks” Lemma 36(i), f and gf are isomorphisms, as (1) and (1,2) are
pullbacks. So g is also an isomorphism, so by the previous result, (2) is a pullback (this needs b to
be epic). �

From here onwards everything is extra material which was not lectured. It will not be on the
exams.
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49 Theorem: (Nine Lemma)
Consider

0

��

0

��

0

��
0 ,2 A

��

,2

p1q

B

b

��

,2 C

��

,2 0

0 ,2 A1

��

,2 B1

b1

��

,2

p2q

C 1

��

,2 0

0 ,2 A2

��

,2 B2

��

,2 C2

��

,2 0

0 0 0

where all rows are exact and b1b � 0. Then if any two columns are exact, the third column is also
exact. In that case (1) is a pullback and (2) is a pushout.

Proof. Not in this course. �

50 Theorem: (Snake Lemma)
A commutative diagram with exact rows as the solid one below induces a six-term exact sequence
between the kernels and cokernels as indicated.

Ker a_��

��

,2 Ker b_��

��

,2 Ker c_��

��

ED

BC
δ

GF

@A
,2

A
f ,2

a

��

B
g ,2

b

��

C ,2

c

��

0

0 ,2 A1
f 1

,2

_��

B1
g1

,2

_��

C 1

_��
Coker a ,2 Coker b ,2 Coker c

Proof. (non-examinable) Consider the kernels and cokernels with the induced maps between
them. For shortness of notation we will write Ker a � K1, Ker b � K2 and Ker c � K3, similarly
we will call the cokernels Qi.

K1_��
k1

��

f ,2 K2_��
k2

��

g ,2 K3_��
k3

��
A

f ,2

a

��

B
g ,2

b

��

C ,2

c

��

0

0 ,2 A1
f 1

,2

q1
_��

B1
g1

,2

q2
_��

C 1

q3
_��

Q1
f̂

,2 Q2
ĝ

,2 Q3
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We give a proof which maximises the use of the Duality Principle (borrowed from Peter Johnstone).
1. Construction of δ Form the diagram

E
� ,2 e ,2 P

p � ,2
_��
q

��

K3_��
k3

��
B g

� ,2

b

��

C

A1
� ,2 f

1

,2

q1
_��

B1

r
_��

Q1
� ,2

t
,2 T

d

� ,2 D

where the upper square is a pullback, the lower square is a pushout, e � ker p and d � coker t.
Remember that pullbacks and pushout preserve both monos and epis (as we are in an abelian
category), so p and r are epis and q and t are monos. So as any epi is the cokernel of its kernel,
we have p � coker e and dually t � ker d. To construct δ : K3 ÝÑ C1, it is enough to factor the
composite rbq through p and through t. For this we just have to show that rbqe � 0 and that
drbq � 0, which are dual to each other, so showing the first is enough.

To prove the first, note that gqe � k3pe � 0, so qe factors through ker g � im f . So if we form
the pullback

L
l ,2

m

��

E_��
qe

��
A

f
,2 B

then its top edge l is epic. This is because it is the same as the pullback:

L
l � ,2

m

��

E_��

��

r��

qe

��22222222222222

A
� ,2

f
$,RRRRRRRRRRRRRRRRR Ker g

� �&
im f
DD

�&DDDD

B

But rbqel � rbfm � rf 1am � tq1am � 0 (as q1 is the cokernel of a),

L
el ,2

m

��

P
p � ,2

_��
q

��

K3_��
k3

��
A

f
,2

a

��

B g
� ,2

b

��

C

A1
� ,2
f 1

,2

q1
_��

B1

r
_��

Q1
� ,2

t
,2 T

d

� ,2 D

so we may deduce rbqe � 0 as required. So we get δ : K3 ÝÑ Q1 such that tδp � rbq.
Exactness at K2 We have k3gf � gk2f � gfk1 � 0 and k3 is monic, so gf � 0. Let

e1 : E1 ÝÑ K2 be the kernel of g; then the composite k2e
1 factors through ker g � im f , so as

before we get an epi l1 : L1 ÝÑ E1 and a morphism m1 : L1 ÝÑ A such that fm1 � k2e
1l1. Now

f 1am1 � bfm1 � bk2e
1l1 � 0 and f 1 is monic, so am1 � 0, i.e. m1 factors through ker a � k1, say by
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s : L1 ÝÑ K1. Now k2fs � fk1s � fm1 � k2e
1l1 and k2 is monic, so fs � e1l1, i.e. s is a morphism

e1l1 ÝÑ f in A {K2. But this implies that im f ¥ im e1l1 � e1 � ker g in SubpK2q (by naturality of
image factorisation).

L1
l � ,2

s

��

Ker g

��

� ,2 e
1

,2 K2

K1
� ,2 Imf

� ,2
im f

,2 K2

The reverse inequality follows from gf � 0, so we get exactness at K2.
Exactness at K3 The pair pk2, gq factors through the pullback P , say by u : K2 ÝÑ P . So to

prove that δg � 0, it suffices (since t is monic) to prove that tδpu � 0, i.e. that rbqu � 0 (since δ
was induced by tδp � rbq). But this composite equals rbk2, which is of course 0.

Now let h : K3 ÝÑ H be the cokernel of g, and form the pushout (the right-hand square)

K2
g ,2

_��
k2

��

K3
h � ,2

_��
k3

��

H_��
m

��
B g

,2 C o
� ,2 M

where m is monic as k3 is. Then ogk2 � ok3g � mhg � 0, so og factors through coker k2 � coim b.
So (as before with l) if we form another pushout (the right-hand square)

A
f ,2

a

��

B
og ,2

b

��

M_��
m1

��
A1

f 1
,2 B1

o1
,2 N

then m1 is monic. Then o1f 1a � o1bf � m1ogf � 0, so o1f 1 factors through coker a � q1, say by
n : Q1 ÝÑ N . Then the pair po1, nq factors through the pushout T , say by x : T ÝÑ N .

A1
f 1 ,2

q1

��

B1

r

��

p��

o1

��00000000000000

Q1 t
,2

n

#+PPPPPPPPPPPPPPP T

x
AAAA

�%AAAA

N

Then

nδp � xtδp � xrbq � o1bq � m1ogq � m1ok3p � m1mhp

and as p is epic, we have nδ � m1mh, i.e. n is a morphism δ ÝÑ m1mh in the coslice category
K3zA , so coim δ ¥ coimm1mh � h � coker g in the preorder of quotients of K3.

K3
� ,2 Coim δ

� ,2 ,2

��

Q1

n

��
K3

h

� ,2 Coker g � ,2
m1m

,2 N

The reverse inequality follows from δg � 0. So we have exactness at K3.
Exactness at Q1 and Q2 These proofs are dual to those at K3 and K2 respectively. �

Notice that when f is a mono, then so is the induced Ker a ÝÑ Ker b, and when g1 is an epi,
so is Coker b ÝÑ Coker c.
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Fact: Every small abelian category has a full, faithful and exact embedding into a category
R-Mod of modules over a ring R. This allows us to prove results about exact sequences, monos,
epis, images etc. using elements. But the result is not easy!

(This may not be used in exams!)
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