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Preamble

The Notes

These notes are not verbatim what I will write in the lectures, but the content is exactly the same.
(Every year some people complain about this, but this is why they are called my “lecture notes”.
Many other students appreciate that it is this way.) The main difference is that they have more
complete sentences, and they may have some comments that I only said in lectures. I might try
to make such comments green, but it may not be consistent.
If you find any errors and typos in the notes, please do let me know (email address is on www.julia-
goedecke.de), even if they look trivial.
The notes are partly based on the book Elementary Linear Algebra by Anton and Rorres.

How to use the notes

These notes represent the material covered in the corresponding course in Leicester. They were
accompanied by video lectures and live lectures with discussions, which are not freely available.
The following comments refer back to these, but can be adapted to be more general advice to
students.
Possible uses:

˛ Use them for revision or when doing Workbook questions.
˛ Look back at some details you didn’t quite understand in lectures.
˛ For automatic searching of a term/concept.
˛ Many more ways: it is up to you to find out how they are most useful for you.

What to do during lecture videos

˛ In maths lectures, you are not expected to understand everything in real time. You will
have to go over some bits again, do exercises, work on the material to understand it fully.

˛ Uni maths lectures will have more mathematical language and symbols than you might
be used to from school. You will slowly get used to this. If you have a question on some
particular notation that is not answered in lectures, do ask someone.

˛ Make a note if there is something you need to come back to later.
˛ Try to visualise the mathematical concepts.
˛ If you think of a link to a topic you’ve seen before, make a quick note and explore it more
after.

Some comments on note-taking

˛ Many students (including myself) find that taking down notes in lectures is actually the
best way to concentrate and to learn something. If this applies to you, set these notes
aside for a while and use them just to fill in gaps later.

˛ If you do take notes, make sure you also listen to what I say during the lecture (video
or live). With videos, you can pause them or play on slower speed if you find you can’t
keep up.

˛ If you can’t concentrate on listening and taking notes at the same time (like my brother),
then just use these notes instead and concentrate on listening.
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Chapter 0. Preamble Exercises

˛ DO NOT try to read the notes (for the first time) while I’m lecturing the same material:
you will most likely not hear what I say and not fully take in either.

So my advice is: use one of these three methods:

˛ Take notes in lectures. (And listen as well.)
˛ Read ahead, or pause the video and read in between, and just listen in lectures knowing
you’ve already seen it in the notes.

˛ Listen in lectures hoping/trusting that it will all be written in the notes.

What to do in live lectures

˛ Participate in all activities, e.g. true/false questions or multiple choice questions.
˛ Think actively about the material, as prompted by the lecture.
˛ Ask questions to help you understand the material.

What to do between/after lectures

To help your understanding of the material:

˛ Do the exercises suggested.
˛ Try out statements of propositions and their proofs on an example after the lecture
(video): this can help you understand it.

˛ Try to make your own examples for concepts.
˛ If you’ve tried lecture notes, friends, and exercises and still need help, use the lecturer’s
office hours or email them: they are happy to help you as well.

˛ Suggestion from older students: make your own bank of (new for you) mathematical
symbols with their description. You will learn them better if you make this yourself than
use someone else’s. You can add to it through your university maths journey.

Colours

Text in green is a more informal comment, which often is meant to aid your understanding.
Some comments are in purple. I may not manage to be terribly consistent between green and
purple, but purple comments might not be so informal.
Text in red is very important.

Definitions and results are underlayed in yellow.

I have also put a red border round especially important results.

Exercises

Sometimes in the notes I will say “exercise”. The main reason to have these is for you to be able
to check your understanding by doing a fairly straight-forward exercise yourself. As maths is not
a spectator sport, it is important you keep doing exercises and don’t just read notes passively. It
is helpful for you to try exercises even outside the Workbook Questions I set you to hand in, so
you get enough practice. You will also find Numbas questions which you can use for practice: they
will give you immediate feedback, and many of them are randomised, which means you can try
the same question again with different numbers, to get as much practice as you personally need.
Another source of such exercises are situations in a proof where it says “similarly”. This means
you can try out that bit yourself, and it will be very close to what was done before.
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Introduction

What is Linear Algebra about?
The ingredients are:

˛ vectors, e.g.

˜

1

2

¸

or

¨

˚

˝

3

5

4

˛

‹

‚

or

¨

˚

˚

˝

x1

...

xn

˛

‹

‹

‚

or v, ...

˛ scalars, i.e. real numbers, e.g. 0.5,
?
2, λ, ...

˛ matrices, e.g.

˜

1 0

0 1

¸

or

˜

3 5 2

6 1 2

¸

, ...

˛ some other concepts we will see later.

Some of the most important things we will do with these ingredients are:

˛ linear combinations:

¨ vector addition e.g.

˜

3

5

¸

`

˜

2

1

¸

“

˜

5

6

¸

¨ scalar multiplication e.g. 3 ¨

¨

˚

˝

1

3

5

˛

‹

‚

“

¨

˚

˝

3

9

15

˛

‹

‚

Combine the two to get a linear combination:

3 ¨

¨

˚

˝

1

3

5

˛

‹

‚

` 5 ¨

¨

˚

˝

´1

2

6

˛

‹

‚

´
?
2 ¨

¨

˚

˝

1

0

0

˛

‹

‚

Linear combinations will play a very imortant role throughout the course.
˛ Matrices acting on vectors, e.g.

˜

1 2

0 1

¸˜

1

1

¸

“

˜

1 ` 2

0 ` 1

¸

“

˜

3

1

¸

We will learn how this works in the course.

What do vectors stand for/represent?

˛ An arrow in two or three dimensions.
˛ Experimental data: n different measurements.
˛ Logistics: e.g. give locations of trucks in different warehouses.
˛ Images: hugh, saturation and brightness as well as position of a pixel.
˛ lots more.

What do matrices mean or stand for/represent?
There are many options, depending on the situation.

˛ a function sending a vector to matrix times vector
˛ a system of linear equations
˛ data (lots of different options, see above)
˛ ...

What does “linear” mean?
Intuitively, it has to do with “lines”, so no quadratics, cubics, etc. Just a scalar times a variable,
or a scalar times a vector.
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Chapter 0. Introduction

More directly: linear means we can add vectors or variables, and multiply them by a scalar. But
we cannot do any squaring, roots, sin, cos, log, exponentials, ...
We will see that even this restriction gives a rich area of maths to study.

Why is Linear Algebra useful/important?
It is used in many many areas of maths and applications.

˛ Approximating functions by lines (via tangents) gives a linear situation. This is more
useful than one might think.

˛ Used in solving differential equations.
˛ Can be used in Probability/Statistics.
˛ Used in Machine Learning.
˛ Used in a variety of numerical methods.
˛ Used in coordinate geometry, etc.
˛ many many more
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CHAPTER 1

Vectors and Matrices

A. Vectors in two and three dimensions

Since we said vectors are one of the main ingredients of Linear Algebra, let’s start with vectors in
the plane.

Definition 1.1: A two-dimensional vector has two entries written vertically, with both
entries being real numbers. We also call this a column vector.

For example

˜

1

0

¸

,

˜

0

1

¸

,

˜

´3

2

¸

,

˜?
2

1
2

¸

.

You can think of this vector as describing a point in the plane, or a direction vector starting at
the origin to that point in the plane.

We write a general such vector as

˜

x

y

¸

or as

˜

x1

x2

¸

. Varying over all possible combinations of

real numbers x and y, we get the whole plane, which we write as R2 (denoting two entries of real
numbers).
Given two such vectors, we can add them.

Geometrically, you add two vectors by putting one at the end of the other and then joining the
origin to the second endpoint, as in the picture above.
But it is easy to see from the next two images that this corresponds exactly to adding the x-
components and the y-components separately:
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Chapter 1. Vectors and Matrices Vectors in two and three dimensions

˜

1

2

¸

`

˜

5

0.5

¸

“

˜

1 ` 5

2 ` 0.5

¸

“

˜

6

2.5

¸

and

˜

´3.2

1.2

¸

`

˜

2.5

´2.3

¸

“

˜

´3.2 ` 2.5

1.2 ´ 2.3

¸

“

˜

´0.7

´1.1

¸

It is also clear from this algebraic way of adding them that the order does not matter:
˜

1

2

¸

`

˜

5

0.5

¸

“

˜

5

0.5

¸

`

˜

1

2

¸

Definition 1.2: So in general, we define
˜

x1

x2

¸

`

˜

y1

y2

¸

“

˜

x1 ` y1

x2 ` y2

¸

.

This is called componentwise addition, because we are adding each component or entry of
the vector separately.

We can also scale a vector by a real number: leaving the direction the same and only changing the
length of the vector.

1

2
¨

˜

1

1

¸

“

˜

0.5

0.5

¸

and 3¨

˜

1

1

¸

“

˜

3

3

¸

2

3
¨

˜

3

´1.5

¸

“

˜

2

´1

¸

and
4

3
¨

˜

3

´1.5

¸

“

˜

4

´2

¸

Again we can calculate this algebraically:

Definition 1.3: We define scalar multiplication of a vector

˜

x1

x2

¸

by a real number λ as

λ

˜

x1

x2

¸

“

˜

λ ¨ x1

λ ¨ x2

¸

.

We take the scalar and multiply each entry of the vector by that scalar.
The symbol λ is called lambda, it is a greek letter we often use for scalars.
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Chapter 1. Vectors and Matrices Vectors in two and three dimensions

Exercise 1.4: Calculate the following: ˛ 0 ¨

˜

x1

x2

¸

˛

˜

3

1

¸

`

˜

2

1

¸

˛ 3 ¨

˜?
3

π

¸

` 6 ¨

˜

´
?
3
2

π

¸

Now we can do the same thing for vectors in three-dimensional space.

Definition 1.5: A three-dimensional vector has three entries written vertically, with all
entries being real numbers. The collection of all possible three-dimensional vectors is called
R3, which is three-dimensional space.

For example

¨

˚

˝

1

0

0

˛

‹

‚

,

¨

˚

˝

4

´2

0

˛

‹

‚

,

¨

˚

˝

´π

6.4

´3

˛

‹

‚

.

We can add such vectors just as we added two-dimensional vectors.

It is slightly harder to draw in three dimensions, so why don’t you go to this GeoGebra picture and
rotate it and play around with it to get a feel for it. https://www.geogebra.org/3d/xnttqnrc

Definition 1.6: For three-dimensional vectors, the componentwise addition is defined as
¨

˚

˝

x1

x2

x3

˛

‹

‚

`

¨

˚

˝

y1

y2

y3

˛

‹

‚

“

¨

˚

˝

x1 ` y1

x2 ` y2

x3 ` y3

˛

‹

‚

.

Scalar multiplication is defined as

λ ¨

¨

˚

˝

x1

x2

x3

˛

‹

‚

“

¨

˚

˝

λ ¨ x1

λ ¨ x2

λ ¨ x3

˛

‹

‚

.

So they are exactly the same rules as we had for two-dimensional vectors, doing everything com-
ponentwise. The only difference is that we now have three components.
You can see that we have a geometric interpretation and an algebraic way of calculating for these
vectors in two and three dimensions. It is very useful to have both, but we will see soon that
when we get into higher dimensions, it’s harder to visualise geometrically. The topic is called
Linear Algebra because we will focus on the algebraic side of doing things. Do keep the geometric
intuition in two and three dimensions alongside this though. We will now and then fall back on it.

B. Lines and planes in R2 and R3
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Chapter 1. Vectors and Matrices Lines and planes in R2 and R3

What can we do with this vector addition and scalar multiplication? Let’s have a look at lines and
planes.

Definition 1.7: A line in R2 is a set of points of the form
#˜

a

b

¸

` λ ¨

˜

x1

x2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

λ P R

+

for fixed vectors

˜

a

b

¸

and

˜

x1

x2

¸

. The scalar λ varies through all real numbers to give all

points on the line. It is sometimes called a parameter. The vector

˜

a

b

¸

is some point on

the line, and the vector

˜

x1

x2

¸

gives the direction of the line. This direction vector cannot be

zero:

˜

x1

x2

¸

‰

˜

0

0

¸

.

The curly brackets are called set brackets. You can think of a set as a collection of things. The
symbol P means is an element of, and can also be read as “in”. It means the thing on the left is
an element of the set on the right, or is in the set on the right. The vertical line is read as “such
that” or “with” or “where”. So it is “the set of vectors of the form a, b plus lambda times x-one,
x-two with lambda in R” (or where lambda is a real number).

Examples 1.8: ˛

#˜

0

0

¸

` λ

˜

1

2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

λ P R

+

is the line through the origin and the point

˜

1

2

¸

. If the line goes through the origin, we usually leave out the

˜

0

0

¸

and just write

#

λ

˜

1

2

¸ˇ

ˇ

ˇ

ˇ

ˇ

λ P R

+

.

˛ Another line through the origin is

#

λ

˜

´4

3

¸
ˇ

ˇ

ˇ

ˇ

ˇ

λ P R

+

.
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Chapter 1. Vectors and Matrices Lines and planes in R2 and R3

˛ The same way, with any vector, you get a line through the origin. Some of those are the

same lines though:

#

λ

˜

1

2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

λ P R

+

“

#

λ

˜

2

4

¸
ˇ

ˇ

ˇ

ˇ

ˇ

λ P R

+

˛ We can also have lines that don’t go through the origin, for example
#˜

1

1

¸

` λ

˜

´4

´2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

λ P R

+

. You can see from the image that the line does not go

through

˜

´4

´2

¸

: this is the direction vector, so it is parallel to the line. When λ “ 1, we

get the point

˜

1

1

¸

`

˜

´4

´2

¸

“

˜

´3

´1

¸

.

So here both vector addition and scalar multiplication play together.
It might be a little confusing at first that a vector can mean a point on the plane, as well as the
direction vector from the origin to that point, or the same direction vector moved to somewhere
else. However, if you do the algebra, you will always get the right answer. With some practice you
will know when it is helpful to think of a vector as a point and when to think of it as a direction
vector, and how to switch between the two. But if you’re not sure, just do the algebra.

We know that lines are one-dimensional. Intuitively, this means we have only one direction we
can move in (both positively and negatively). It can be helpful to think of it as having “one degree
of freedom”: there is one real number we can choose to determine a point on a line, namely the
parameter λ.
There is a difference between lines that go through the origin and lines that don’t go through the
origin: if we take a point on a line and multiply it by some scalar, will it still be on the line? Or
if we add two points on a line, will they still be on the line? The answer is yes if the line goes
through the origin, and no if it doesn’t.

Exercise 1.9: ˛ Verify that if k

˜

x1

x2

¸

is any point on the line

#

λ

˜

x1

x2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

λ P R

+

, then any

multiple µ ¨ k

˜

x1

x2

¸

(µ is read mu) still lies on the same line. And if l

˜

x1

x2

¸

is a second

point on the same line, verify that the sum of the two points is still on the line. Here
˜

x1

x2

¸

‰

˜

0

0

¸

is a fixed vector defining the line.

If you find it tricky to get started, first try it in the case where you choose some
actual numbers for x1 and x2, for example one of the lines through the origin we had
earlier. You can also choose specific numbers for k and l, but then see if you can still do
the calculations using the symbols k and l.

˛ Verify that for a line which does not go through the origin, adding two points on the line
does not give a point on the line.
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Chapter 1. Vectors and Matrices Lines and planes in R2 and R3

What would a line in three-dimensional space look like? We can use the same expression, just
using vectors with three entries everywhere:

$

’

&

’

%

¨

˚

˝

a

b

c

˛

‹

‚

` λ ¨

¨

˚

˝

x1

x2

x3

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ P R

,

/

.

/

-

You can see it could be tedious to write everything out separately for two-dimensional vectors and
three-dimensional vectors. So we use some convenient notation that lets us write both at once:

Definition 1.10: Writing u, v for vectors in R2 or R3, a line is a set of the form tu ` λ ¨ v | λ P Ru,
where v ‰ 0.

So u might be

˜

a

b

¸

P R2, or it might be

¨

˚

˝

a

b

c

˛

‹

‚

P R3, or as we’ll see in the next section, even a

vector with n entries. And similarly for v. This way we can write expressions that are shorter,
and more general, so we don’t have to write similar expressions for different situations which only
vary in how many entries each vector has.
We tend to use letters u, v, w for vectors, and sometimes also x, y. We tend to use greek letters
λ, µ, ν (lambda, mu, nu) for scalars, but you can also use k and l. For the real numbers which are
the entries of a vector, we sometimes use x, y, z (then you’d have to know from context whether
x is a real number or a vector, or say it in the sentence), and more often x1, x2, x3 etc. Generally
it needs to be made clear what a letter stands for, these are just guidelines.

Let’s now look at planes.

Definition 1.11: A plane (in R3) is a set of the form

tu ` λv ` µw | λ, µ P Ru

where u is a fixed vector on the plane, and v and w are two direction vectors which are not
zero and do not go in the same direction.

What does “do not go in the same direction” mean here? Let’s look at some examples.

Examples 1.12: ˛ Just as for lines, we can have planes that go through the origin, so
where u “ 0. For example, the x, y-plane in three-dimensional space is

$

’

&

’

%

λ

¨

˚

˝

1

0

0

˛

‹

‚

` µ

¨

˚

˝

0

1

0

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

.

So every vector in this plane has the form

¨

˚

˝

λ

µ

0

˛

‹

‚

, so it is some point in the x, y-plane.

˛ Similarly we can have the x, z-plane
$

’

&

’

%

λ

¨

˚

˝

1

0

0

˛

‹

‚

` µ

¨

˚

˝

0

0

1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

and the y, z-plane
$

’

&

’

%

λ

¨

˚

˝

0

1

0

˛

‹

‚

` µ

¨

˚

˝

0

0

1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

.
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Chapter 1. Vectors and Matrices Lines and planes in R2 and R3

˛ Another plane through the origin is

$

’

&

’

%

λ

¨

˚

˝

1

1

0

˛

‹

‚

` µ

¨

˚

˝

0

0

1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

.

If you look straight down onto the x, y-plane, you see it just as the line through

¨

˚

˝

1

1

0

˛

‹

‚

, but

if you rotate your viewpoint a bit, you can see that it is a vertical plane in that direction.
You can rotate it in GeoGebra to get different viewpoints: https://www.geogebra.org/
3d/bkxrcnfk

˛ Is this also a plane?
$

’

&

’

%

λ

¨

˚

˝

1

1

0

˛

‹

‚

` µ

¨

˚

˝

3

3

0

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

If we look at the expression algebraically, we can simplify it to pλ ` 3µq ¨

¨

˚

˝

1

1

0

˛

‹

‚

. The two

directions

¨

˚

˝

1

1

0

˛

‹

‚

and

¨

˚

˝

3

3

0

˛

‹

‚

are not really different directions, they go in the same direction.

This does not give us a plane, but only a line.

We can see from the last example that the condition “two direction vectors which do not go in the
same direction” is crucial for getting a plane rather than a line. If one vector goes in the same
direction (this includes with opposite sign) as the other, then it does not reach any other points
than can be reached with just one vector.

Definition 1.13: We say two vectors u, v are parallel if one is a scalar multiple of the other:
if u “ λv for some λ P R (or the other way round).

The “or the other way round” is to cover the situation where v might be the zero vector

¨

˚

˝

0

0

0

˛

‹

‚

. The

zero vector is parallel to any other vector, because it is 0 times any other vector.
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Chapter 1. Vectors and Matrices Vectorspace Rn

Two vectors which are not parallel are called independent. To have a plane, we need two
independent directions. This is an example of an important concept called linear independence
which we will study much more later on.

Exercise 1.14: Determine which of the following are planes. For each plane, also say whether it
goes through the origin or not. (You can use the tick boxes given.) CAREFUL: while we said that
if the plane (or line) goes through the origin, we don’t use the fixed first vector (the one that does
not have a parameter in front of it), the following planes may not be written in the most efficient

way, so you have to check explicitely whether they go through the origin

¨

˚

˝

0

0

0

˛

‹

‚

or not.

a)

$

’

&

’

%

λ

¨

˚

˝

1

0

4

˛

‹

‚

` µ

¨

˚

˝

8

2

0

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

b)

$

’

&

’

%

¨

˚

˝

1

1

1

˛

‹

‚

` λ

¨

˚

˝

1

2

0

˛

‹

‚

` µ

¨

˚

˝

0

4

2

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

c)

$

’

&

’

%

¨

˚

˝

3

1

1

˛

‹

‚

` λ

¨

˚

˝

1

0

3

˛

‹

‚

` µ

¨

˚

˝

´2

0

´6

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

d)

$

’

&

’

%

¨

˚

˝

1

2

1

˛

‹

‚

` λ

¨

˚

˝

3

6

2

˛

‹

‚

` µ

¨

˚

˝

1

2

1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

e)

$

’

&

’

%

¨

˚

˝

´1

3
1
2

˛

‹

‚

` λ

¨

˚

˝

´2

6

2

˛

‹

‚

` µ

¨

˚

˝

1

´3

´ 3
2

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

Exercise 1.15: As for lines, show that if a plane goes through the origin, then adding two vectors
on the plane gives another vector on the plane, and multiplying a vector on the plane by a scalar
gives another vector on the plane.

A plane is two-dimensional: we can choose two different real numbers, the two parameters λ
and µ. So we have “two degrees of freedom”. Any choice of the two parameters gives a different
point on the plane. Of course this is only true if the two direction vectors really are independent!
If we choose only one parameter, we have not determined a point in the plane.

C. Vectorspace Rn

We saw that we can write a line equation in a way that works for two-dimensional vectors and
three-dimensional vectors at the same time. We also saw that while we can use our geometric
intuition, we can also just use algebra to work out questions about vectors.
Now we are going to look at higher dimensions, where we can’t easily visualise things geometrically
any more. If we have more than three entries in a vector, we as humans can’t easily imagine it in
our three-dimensional space, but we can still do the algebra, and use some of the intuition from
two and three dimensions to guide us.
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Chapter 1. Vectors and Matrices Vectorspace Rn

Definition 1.16: A vector in Rn is a column vector with n entries, each of which is a real
number:

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

Vector addition and scalar multiplication work entrywise, as we saw in R2 and R3:
¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˝

y1

y2
...

yn´1

yn

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

x1 ` y1

x2 ` y2
...

xn´1 ` yn´1

xn ` yn

˛

‹

‹

‹

‹

‹

‹

‚

and λ ¨

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

λx1

λx2

...

λxn´1

λxn

˛

‹

‹

‹

‹

‹

‹

‚

Examples 1.17: ˛ When n “ 2 or 3, these are just the examples we saw earlier.
˛ When n “ 1, it is just a number: R1 “ R, and we add numbers and multiply numbers as
we are used to.

˛ Here are some vectors in R4:

¨

˚

˚

˚

˝

4

´2
?
2

3

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1
2
1

100

π

´4.2

˛

‹

‹

‹

‚

˛ Here are some vectors in R5:

¨

˚

˚

˚

˚

˚

˚

˝

1

0

0

0

0

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

0

1

0

0

0

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

0

0

1

0

0

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

0

0

0

1

0

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

0

0

0

0

1

˛

‹

‹

‹

‹

‹

‹

‚

˛ If we want to say something about vectors of any length, we use dots to indicate the

pattern of entries, as in

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

. If n happens to be 3, this would still be

¨

˚

˝

x1

x2

x3

˛

‹

‚

, even

though the general vector gives four named entries with dots inbetween.
˛ We often use notation such as v P Rn so we don’t have to write out entries with dots. We
can then still write entries when we need to.

˛ For any n, there is a vector with 0 in every entry, which we were calling “the origin”
before. We also call this the zero vector and write it as 0.

Definition 1.18: A linear combination of vectors u, v is an expression of the form λu`µv,
with scalars λ, µ P R.

This combines vector addition and scalar multiplication. The concept of linear combination will
be very important throughout the course.

Examples 1.19: ˛ If we set λ “ µ “ 1, then just the vector sum of two vectors is an
example of a linear combination.

˛ Setting µ “ 0 gives λu as a possible linear combination.
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Chapter 1. Vectors and Matrices Vectorspace Rn

˛ We can have linear combinations of more than two vectors:

λ

¨

˚

˝

1

0

0

˛

‹

‚

` µ

¨

˚

˝

0

1

0

˛

‹

‚

` ν

¨

˚

˝

0

0

1

˛

‹

‚

is a linear combination of three vectors. (ν is pronounced nu)

Exercise 1.20: ˛ If v is any vector, what is 0 ¨ v?

˛ Can you write any vector

˜

x

y

¸

P R2 as a linear combination of the vectors

˜

1

0

¸

,

˜

0

1

¸

?

˛ Can you write any vector

¨

˚

˚

˚

˝

x1

x2

x3

x4

˛

‹

‹

‹

‚

P R4 as a linear combination of the vectors

¨

˚

˚

˚

˝

1

0

0

0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

0

1

0

0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

0

0

1

0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

0

0

0

1

˛

‹

‹

‹

‚

? Can you do it with just the first three of these vectors?

We see that we can add vectors of the same size, and multiply a vector by a scalar, which results
again in a vector of the same size. Actually, these operations satisfy some rules:

Proposition 1.21: (Properties of vector addition and scalar mult)
Any vectors u, v, w P Rn and any scalars λ, µ P R satisfy:

VA0 u ` v P Rn (closure under vector addition)
VA1 The zero vector 0 satisfies v ` 0 “ v “ 0 ` v. (zero vector)
VA2 There are negative vectors satisfying v ` p´vq “ 0 “ p´vq ` v. (negative vectors)
VA3 pu ` vq ` w “ u ` pv ` wq (associativity of vector addition)
VA4 u ` v “ v ` u (commutativity of vector addition)
SM0 λv P Rn (closure under scalar multiplication)
SM1 1 ¨ v “ v (unit scalar)
SM2 λ ¨ pµvq “ pλ ¨ µqv (associativity of scalar mult)
SM3 pλ ` µq v “ λv ` µv (distributivity of scalar mult over real addition)
SM4 λpu ` vq “ λu ` λv (distribuitivity of scalar mult over vector addition)

We call anything that satisfies these axioms a vector space.

Proof. You can verify these easily using the definitions of vector addition and scalar multi-
plication. (If you’re not sure, try it first for vectors in R2 and R3, and then see that it doesn’t
really change when you use vectors in Rn.) □

We will come back to these axioms/rules later and see that not only vectors in Rn satisfy them,
but also other sets of things. They will become our foundation of the theory of vector spaces,
which is the foundation of linear algebra.

VA stands for vector addition, and SM stands for scalar multiplication. You might wonder why
we start counting at 0: this is because the definition of vector addition and scalar multiplication
already implicitely includes these two properties. But it’s quite useful to state them anyway, as it
reminds us to check them later when we want to show that something satisfies these rules.
Associativity is a property that allows us to “leave away brackets” when we are dealing with more
than two vectors or more than one scalar. We say that vector addition and scalar multiplication
are associative. If you think this is something unimportant and surely always true, think about

the operation “to the power of”. Is 2p32q “ p23q2? No! 2p32q “ 29 and p23q2 “ 26.
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Chapter 1. Vectors and Matrices Vectorspace Rn

Commutativity means that the order of addition doesn’t matter. We will see some other kind
of operations soon where the order does matter! You can also use “to the power of” again: 23 is
not the same as 32. For vector addition, the order doesn’t matter, because we’re adding in each
entry separately, and we know that when adding real numbers, the order doesn’t matter. We say
vector addition is commutative.
Distributivity tells us how to resolve brackets when we have addition (which could be vector
addition, or the addition of real numbers in the scalars) and scalar multiplication. Again this
property comes from the same property for real numbers.

We can define lines and planes in Rn: while the intuition might not work any more of imagining
an actual line in space, the algebraic way of defining these concepts still works:

Definition 1.22: A line in Rn is a set of the form tu ` λ ¨ v | λ P Ru, where u, v P Rn are
fixed vectors with v ‰ 0.

Definition 1.23: Two vectors in Rn are called parallel if one is a scalar multiple of the other.

Definition 1.24: A plane in Rn is a set of the form tu ` λ ¨ v ` µw | λ, µ P Ru, where u, v, w P

Rn are fixed vectors with v ‰ 0 ‰ w, and v and w are not parallel.

We are particularly interested in lines and planes that go through the origin, because they them-
selves also satisfy the vector space axioms VA0-4 and SM0-4.

Example 1.25: Taking the x, y-plane

$

’

&

’

%

λ

¨

˚

˝

1

0

0

˛

‹

‚

` µ

¨

˚

˝

0

1

0

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

λ, µ P R

,

/

.

/

-

in R3, we see that it looks

almost exactly like R2, except that we put a 0 as a third entry for each vector: given

˜

x

y

¸

P R2,

then

¨

˚

˝

x

y

0

˛

‹

‚

is in the x, y-plane of R3. As R2 satisfies the vector space conditions, so does the

x, y-plane in R3.
Similarly the x, z-plane can be thought of as R2 with a zero inserted in the middle, and the
y, z-plane as R2 with a zero added before the entries.

So we are now interested in such subsets that behave like (smaller) kinds of Rn themselves.

Definition 1.26: A subspace of Rn is a set of vectors in Rn that also satisfy all the vector
space conditions VA0-4 and SM0-4.

Some of the properties stay true automatically when we look at a subset of Rn: if u ` v “ v ` u
for any vector u, v P Rn, then this property is automatically still true if we restrict u, v to a plane
or a line or any other subset of vectors.

VA3 associativity of vector addition
VA4 commutativity of vector addition
SM1 unit scalar
SM2 associativity of scalar multiplication
SM3 distributivity of scalar mult over vector addition
SM4 distributivity of scalar mult over real addition

are all of the kind that stay true in any subset of vectors.
So if we have a given line or plane or similar kind of subset, what we have to check is:
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VA0 If we add two vectors in the subset, is the sum still in the subset?
VA1 Is the zero vector in this subset?
VA2 If some vector is in the subset, is its negative also in the subset?
SM0 If we multiply a vector in the subset by some scalar, is it still in the subset?

If these are true, then we have a subset that is a subspace.

Notation 1.27: We write S Ď Rn, a round symbol, for subset, and S ď Rn, a pointed symbol, for
subspace.

Actually, we can reduce it even further:

Proposition 1.28: A subset S of Rn is a subspace if and only if it satisfies:

˛ 0 P S (zero vector is in the set)
˛ for any u, v P S, u ` v P S (closed under vector addition)
˛ for any v P S and any λ P R, λv P S (closed under scalar mult)

Proof. If we check these three, then we automatically get negative vectors: ´v “ p´1q¨v. □

BE CAREFUL: you might think that we can get rid of checking whether 0 is in the set as well,
because 0 ¨ v “ 0. But we do need to have some vector in the set: if there are no vectors at all,
then the “closed under” conditions are vacuously true (because there are no cases to check). But
if we don’t have any vectors at all, then we also don’t get 0, so it does not satisfy the conditions
to be a vector space.

Examples 1.29: ˛ As we saw in an earlier exercise, a line through 0 (in R2, or R3 or Rn)
is a subspace. You can think of it as a copy of the real number line R inside Rn: choosing
the paramter λ, one real number, gives you a point on the line.

˛ A line which doesn’t go through 0 is not a subspace: it fails all three of the conditions.
These lines have their uses, but for much of the course we prefer lines that go through 0.

˛ A plane through the origin 0 is a subspace. A plane which does not go through 0 is not
a subspace.

˛ You can have “bigger” subspaces as well:

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

x1

x2

x3

0

˛

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1, x2, x3 P R

,

/

/

/

.

/

/

/

-

is a subspace of R4 that looks a lot like R3. Similarly

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

x1

x2

0

x4

˛

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1, x2, x4 P R

,

/

/

/

.

/

/

/

-

and

$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

0

x2

x3

x4

˛

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2, x3, x4 P R

,

/

/

/

.

/

/

/

-

etc.

˛

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

x3

x1 ´ x2

3x3

˛

‹

‹

‹

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1, x2, x3 P R

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

is a subspace of R5.

¨ The zero vector is of that type: use x1 “ x2 “ x3 “ 0.
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¨ Adding two vetors of that type gives another vector of that type:
¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

x3

x1 ´ x2

3x3

˛

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˝

y1

y2

y3

y1 ´ y2

3y3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

x1 ` y1

x2 ` y2

x3 ` y3

px1 ` y1q ´ px2 ` y2q

3px3 ` y3q

˛

‹

‹

‹

‹

‹

‹

‚

¨ A scalar multiple still stays of that type:

λ

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

x3

x1 ´ x2

3x3

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

λx1

λx2

λx3

pλx1q ´ pλx2q

3pλx3q

˛

‹

‹

‹

‹

‹

‹

‚

Exercise 1.30: For the first examples, show that they are a subspace by checking the three
conditions. (This is meant to give you practice in remembering which conditions to check.)

Fact 1.31: These are all the possible subspaces of R2:

˛ Just the zero vector

˜

0

0

¸

.

˛ Any line through the origin.
˛ All of R2.

These are all possible subspaces of R3:

˛ Just the zero vector

¨

˚

˝

0

0

0

˛

‹

‚

.

˛ Any line through the origin.
˛ Any plane through the origin.
˛ All of R3.

We will not prove it now, but we will learn tools later in the course that prove this.

D. Matrices

Our second main ingredient for linear algebra is something called a matrix.

Definition 1.32: A matrix is a rectangular array of numbers or terms. A matrix has rows
and columns. We refer to the size of a matrix as m ˆ n, where m is the number of rows
and n is the number of columns. We write Mm,n for the set of all m ˆ n matrices. If m “ n,
so a matrix has the same number of rows as columns, we call it a square matrix.

Read the size “m by n”, not “m times n”.
What does a matrix stand for or mean? The answer is: one of many things, depending on the
context! A matrix can represent

˛ a collection of data,
˛ a function sending vectors of a certain size to other vectors,
˛ a system of linear equations,
˛ some other possibilities.

In the course we will mostly focus on a matrix representing a function, and a matrix representing
a system of linear equations. To explain both of these, we will have to learn how to multiply a
matrix times a vector. But let’s just do some slightly easier things first.

MA1114 Linear Algebra Page 17 prepared by Julia Goedecke, 2019
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Notation 1.33: We usually denote matrices by capital letters such as A, B, C etc, or perhaps
M . We write aij or Aij for the entries of A: the first index i gives the row and the second index j
gives the column.

Examples 1.34: ˛ A “

´

1 0
¯

is a 1 ˆ 2 matrix with entries a11 “ 1 and a12 “ 0.

˛

˜

1 0

0 1

¸

is a 2 ˆ 2 matrix. This is a square matrix.

˛ B “

˜

3
4 ´ 2

5
1
2

9
102 π

?
3

¸

is a 2 ˆ 3 matrix. Some of the entries are b12 “ ´ 2
5 , b23 “

?
3.

˛ A vector in Rn can also be viewed as a n ˆ 1 matrix.
˛ A 1 ˆ 1 matrix is just a number: x. We usually leave out the brackets then.

˛

¨

˚

˝

a11 a12

a21 a22

a31 a32

˛

‹

‚

is a general 3 ˆ 2 matrix.

Notice that many examples given in these notes and in other books use integers unproportionally
often. This is just because we humans find it much easier to calculate with integers, so when we
want to explain something new, we keep the surrounding things as simple as possible. In the “real
world”, you will not come across as many integers. But if we can let computers deal with the
calculations, it only matters that we understand what is going on, and we can learn that just as
well on integers.

Definition 1.35: Two matrices A and B are equal if they have the same size and all their
entries agree.

Examples 1.36: ˛

˜

3 2

1 3

¸

and

˜

3 2 0

1 3 0

¸

are not equal, as they don’t have the same

size.

˛ A “

˜

3 2

1 3

¸

and B “

˜

x 2

1 y

¸

are not equal, as not all their entries agree. Can you

choose values for x and y such that A “ B?
˛ Let A and B be matrices with entries Aij “ ij and Bij “ ij . Must A “ B? NO: Suppose
A is a 3 ˆ 3 matrix but B is a 2 ˆ 3 matrix. They are not the same, but we might not
have noticed if we just check the formula for the entries.

A “

¨

˚

˝

1 1 1

2 4 8

3 9 27

˛

‹

‚

B “

˜

1 1 1

2 4 8

¸

Definition 1.37: In a square matrix, the entries Aii are called the diagonal entries. The
sum of the diagonal entries is called the trace of the matrix, written trA.

Example 1.38:

A “

¨

˚

˝

a11 a12 a13

a21 a22 a23

a31 a32 a33

˛

‹

‚

has trace trA “ a11 ` a22 ` a33.

Definition 1.39: A square matrix in which all diagonal entries are 1 and all other entries are
0 is called an identity matrix and written I, or In if it has size n ˆ n.
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Examples 1.40:

I2 “

˜

1 0

0 1

¸

I3 “

¨

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‚

I4 “

¨

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

˛

‹

‹

‹

‚

Definition 1.41: Given two matrices A and B of the same size, their matrix sum A ` B is
calculated entrywise: pA ` Bqij “ Aij ` Bij .
We can multiply a matrix by a scalar by multiplying each entry: pλAqij “ λAij .

Examples 1.42: Matrices have to be the same size if we want to add them! We cannot add
matrices of different sizes.

˛

˜

3 1

2 9

¸

`

˜

7 2

8 3

¸

“

˜

10 3

10 12

¸

˛ 3 ¨

´

1 3
¯

“

´

3 9
¯

˛ 4 ¨

¨

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‚

` 3

¨

˚

˝

0 1 0

0 0 0

0 0 0

˛

‹

‚

“

¨

˚

˝

4 3 0

0 4 0

0 0 4

˛

‹

‚

As for vectors, we call this combination of matrix sum and multiplying by scalars a
linear combination of matrices.

Exercise 1.43: If it is possible, add the following matrices.

˛

˜

3 1

2 4

¸

`

˜

2 1

9 3

¸

˛

˜

1 2

8 2

¸

`

¨

˚

˝

9 1 0

3 8 4

9 2 2

˛

‹

‚

˛

´

1 2 9
¯

`

˜

2 3 2

9 8 1

¸

˛ 4 ¨

¨

˚

˝

9 1 8

3 7 3

8 1 7

˛

‹

‚

` 2 ¨

¨

˚

˝

2 9 1

8 2 7

3 6 4

˛

‹

‚

Proposition 1.44: (Matrices form a vector space)
The set Mm,n of all matrices of a given size satisfy the conditions VA0-4 and SM0-4.

Proof. You can check this in the same way as for vectors: all the operations just happen in
each entry. □

We can “turn matrices the other way around”:

Definition 1.45: The transpose of an m ˆ n matrix A is the n ˆ m matrix AT with entries
pAT qij “ Aji.

So the rows and columns are being swapped.

Examples 1.46: We can transpose square and non-square matrices.
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˛

˜

1 3 2

9 2 ´1

¸T

“

¨

˚

˝

1 9

3 2

2 ´1

˛

‹

‚

˛

˜

2 3

1 8

¸T

“

˜

2 1

3 8

¸

˛

´

3 2 1
¯T

“

¨

˚

˝

3

2

1

˛

‹

‚

You can see that the diagonal entries stay the same in the transpose.

Proposition 1.47: (Properties of Transpose)
For any matrices A, B of the same size, and λ P R, we have

(i) pAT qT “ A;
(ii) pA ` BqT “ AT ` BT ;
(iii) pλAqT “ λAT .

Proof. First check that the matrices on either side of each equation have the same size. Then:

(i) ppAT qT qij “ pAT qji “ Aij

(ii) ppA ` BqT qij “ pA ` Bqji “ Aji ` Bji “ pAT qij ` pBT qij

(iii) ppλAqT qij “ pλAqji “ λAji “ λpAT qij □

Example 1.48:
¨

˝

˜

1 2

3 4

¸T
˛

‚

T

“

˜

1 3

2 4

¸T

“

˜

1 2

3 4

¸

E. Matrix multiplication

So now we will learn the crucial way that a matrix acts on a vector.

Notation 1.49: Given a matrix A, we refer to the columns by A1, A2, . . . , An or a1, a2, . . . , an:

¨

˚

˚

˚

˚

˚

˚

˝

Ò Ò Ò

a1 ¨ ¨ ¨ ak ¨ ¨ ¨ an

Ó Ó Ó

˛

‹

‹

‹

‹

‹

‹

‚

Definition 1.50: (Matrix times vector) An m ˆ n matrix A can act on a vector v P Rn

to give a vector Av P Rm, in the following way:
¨

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n´1 a1n

a21 a22 ¨ ¨ ¨ a2n´1 a2n
...

... ¨ ¨ ¨
...

...

am´11 am´12 ¨ ¨ ¨ am´1n´1 am´1n

am1 am2 ¨ ¨ ¨ amn´1 amn

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn

a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn

...

am´11x1 ` am´12x2 ` ¨ ¨ ¨ ` am´1nxn

am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn

˛

‹

‹

‹

‹

‹

‹

‚

or
¨

˚

˚

˚

˚

˚

˚

˝

Ò Ò Ò

a1 ¨ ¨ ¨ ak ¨ ¨ ¨ an

Ó Ó Ó

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

“ x1

¨

˚

˚

˚

˚

˚

˚

˝

Ò

a1

Ó

˛

‹

‹

‹

‹

‹

‹

‚

` x2

¨

˚

˚

˚

˚

˚

˚

˝

Ò

a2

Ó

˛

‹

‹

‹

‹

‹

‹

‚

` ¨ ¨ ¨ ` xn´1

¨

˚

˚

˚

˚

˚

˚

˝

Ò

an´1

Ó

˛

‹

‹

‹

‹

‹

‹

‚

` xn

¨

˚

˚

˚

˚

˚

˚

˝

Ò

an

Ó

˛

‹

‹

‹

‹

‹

‹

‚
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Examples 1.51: ˛ If the matrix is just one row, you get a single number as the answer,
and you might have seen something like this as a “dot product of vectors”:

´

a b c d e
¯

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

x3

x4

x5

˛

‹

‹

‹

‹

‹

‹

‚

“ ax1 ` bx2 ` cx3 ` dx4 ` ex5

˛ The 2 ˆ 2 case is perhaps easiest written as
˜

a b

c d

¸˜

x

y

¸

“

˜

ax ` by

cx ` dy

¸

.

˛ Here is the 3 ˆ 3 case written out:
¨

˚

˝

a11 a12 a13

a21 a22 a23

a31 a32 a33

˛

‹

‚

¨

˚

˝

x1

x2

x3

˛

‹

‚

“

¨

˚

˝

a11x1 ` a12x2 ` a13x3

a21x1 ` a22x2 ` a23x3

a31x1 ` a32x2 ` a33x3

˛

‹

‚

˛ Here is a visual picture that might help:
¨

˚

˝

˛

‹

‚

¨

˚

˝

˛

‹

‚

“

¨

˚

˝

|

|

|

˛

‹

‚

Think about “a row times a column”: first entry in row times first entry in column, plus
second entry in row times second entry in column, and so on. So it’s just several times
the very first example.

˛ Here’s an example with numbers:

˜

1 2 3

4 5 6

¸

¨

˚

˝

7

8

9

˛

‹

‚

“

˜

1 ¨ 7 ` 2 ¨ 8 ` 3 ¨ 9

4 ¨ 7 ` 5 ¨ 8 ` 6 ¨ 9

¸

˛ Multiplying a vector by the identity matrix does not change it:
¨

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

x1

x2

...

xn

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

x1

x2

...

xn

˛

‹

‹

‹

‹

‚

˛ The second way of viewing it can be helpful sometimes: A matrix times a vector is the
linear combination of the columns of the matrix, with the entries of the vector as the
scalars for the linear combination. Using the second expression of the definition in the
3 ˆ 3 case, it looks like this:

¨

˚

˝

Ò Ò Ò

a1 a2 a3

Ó Ó Ó

˛

‹

‚

¨

˚

˝

x1

x2

x3

˛

‹

‚

“ x1

¨

˚

˝

Ò

a1

Ó

˛

‹

‚

` x2

¨

˚

˝

Ò

a2

Ó

˛

‹

‚

` x3

¨

˚

˝

Ò

a3

Ó

˛

‹

‚

This viewpoint tends to be more useful in understanding of certain properties and rela-
tionships than for explicit calculation, though you can use it if you find it helpful.

Exercise 1.52: Calculate the following:

˛

˜

3 2

5 1

¸˜

1

1

¸

˛

˜

1 3 2

9 2 ´1

¸

¨

˚

˝

1

3

2

˛

‹

‚

˛

¨

˚

˝

1 9 0

8 0 1

0 2 8

˛

‹

‚

¨

˚

˝

1

2

3

˛

‹

‚

˛

¨

˚

˝

1 9

3 2

2 ´1

˛

‹

‚

˜

´1

2

¸

This now allows us to view a matrix as a function:
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Definition 1.53: An mˆn matrix A can be viewed as a function TA : Rn ÝÑ Rm: it takes a
vector v P Rn and sends it to TApvq “ Av, the matrix times the vector. We call this a matrix
transformation.

Examples 1.54: ˛ A “

˜

3 2

5 1

¸

sends a vector

˜

x

y

¸

P R2 to the vector

˜

3x ` 2y

5x ` y

¸

P R2,

so it represents a matrix transformation TA : R2 ÝÑ R2.

˛ B “

˜

1 3 2

9 2 ´1

¸

gives a matrix transformation TB : R3 ÝÑ R2.

˛ C “

¨

˚

˝

1 9

3 2

2 ´1

˛

‹

‚

gives a matrix transformation TC : R2 ÝÑ R3, the other way round to B.

˛ An identity matrix In corresponds to the identity function id : Rn ÝÑ Rn: each vector
gets sent to itself. Inv “ v, so TInpvq “ v.

As well as multiplying a matrix times a vector, we can multiply matrices of matching sizes.

Definition 1.55: (Matrix multiplication) If A is a mˆ r matrix and B is a r ˆn matrix,

then we can form the matrix product AB with entries pABqij “
r
ř

k“1

AikBkj . This is a mˆn

matrix.
We can also write down the matrix product using the columns of the second matrix: if

B “

¨

˚

˝

Ò Ò Ò

b1 ¨ ¨ ¨ bk ¨ ¨ ¨ bn

Ó Ó Ó

˛

‹

‚

,

then

AB “

¨

˚

˝

Ò Ò Ò

Ab1 ¨ ¨ ¨ Abk ¨ ¨ ¨ Abn

Ó Ó Ó

˛

‹

‚

,

using the matrix times vector operation we have already defined.

You can visualise it:
¨

˚

˝

˛

‹

‚

¨

˚

˝

˛

‹

‚

“

¨

˚

˝

| | |

| | |

| | |

˛

‹

‚

The entry in row i, column j of the product AB is calculated by taking row i of A times column
j of B, as calculated in the first example of matrix times vector.
Important! You can only multiply matrices if their sizes match. Each single entry is calculated by
a row of the first matrix times a column of the second matrix, and this is only possible if those rows
have the same size as the columns. So to be able to multiply two matrices, the middle numbers of
their sizes have to match:

A ¨ B “ AB

m ˆ r r ˆ n m ˆ n

And this middle matching size “drops out” to give you the size of the product.
You can see that a similar pattern of middle matching index happens in the formula for an entry
of the matrix product.

Examples 1.56: ˛ Our previous examples of matrix times vector still are examples for
this, as a vector can be seen as a matrix with just one column. So in particular, if
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A “

´

a1 a2 a3 a4 a5

¯

is a 1 ˆ 5 matrix and B “

¨

˚

˚

˚

˚

˚

˚

˝

b1

b2

b3

b4

b5

˛

‹

‹

‹

‹

‹

‹

‚

is a 5 ˆ 1 matrix, the

product AB will be a 1 ˆ 1 matrix, i.e. a number.

´

a1 a2 a3 a4 a5

¯

¨

˚

˚

˚

˚

˚

˚

˝

b1

b2

b3

b4

b5

˛

‹

‹

‹

‹

‹

‹

‚

“ a1b1 ` a2b2 ` a3b3 ` a4b4 ` a5b5 “

5
ÿ

k“1

akbk “
ÿ

k

A1kBk1

So for any other example, per entry we are doing exactly this calculation with the appro-
priate row from the first matrix and the appropriate column from the second matrix.

˛ If A and B are both 2 ˆ 2 matrices, we get
˜

a11 a12

a21 a22

¸˜

b11 b12

b21 b22

¸

“

˜

a11b11 ` a12b21 a11b12 ` a12b22

a21b11 ` a22b21 a21b12 ` a22b22

¸

If you look carefully, you can see that for the i, jth entry, we have ai1b1j ` ai2b2j . This
is the sum in the definition written out for this case.

˛ Here are visualisations for non-square examples:
¨

˚

˝

˛

‹

‚

¨

˚

˝

˛

‹

‚

“

¨

˚

˝

| |

| |

| |

˛

‹

‚

˜ ¸

¨

˚

˝

˛

‹

‚

“

˜

| | |

| | |

¸

3 ˆ 3 3 ˆ 2 3 ˆ 2 2 ˆ 3 3 ˆ 3 2 ˆ 3

˛ If A is a 3 ˆ 3 matrix and B is a 3 ˆ 2 matrix, as in the first visual example above, then
for example the entry in the first row and second column of the product is

pABq12 “ a11b12 ` a12b22 ` a13b32 “
ÿ

k

a1kbk2

˛ Here are some examples with actual numbers:
¨

˚

˝

1 2 3

4 5 6

7 8 9

˛

‹

‚

¨

˚

˝

10 11

12 13

14 15

˛

‹

‚

“

¨

˚

˝

1 ¨ 10 ` 2 ¨ 12 ` 3 ¨ 14 1 ¨ 11 ` 2 ¨ 13 ` 3 ¨ 15

4 ¨ 10 ` 5 ¨ 12 ` 6 ¨ 14 4 ¨ 11 ` 5 ¨ 13 ` 6 ¨ 15

7 ¨ 10 ` 8 ¨ 12 ` 9 ¨ 14 7 ¨ 11 ` 8 ¨ 13 ` 9 ¨ 15

˛

‹

‚

3 ˆ 3 3 ˆ 2 3 ˆ 3

¨

˚

˝

1 2

3 4

5 6

˛

‹

‚

˜

10 11 12

13 14 15

¸

“

¨

˚

˝

1 ¨ 10 ` 2 ¨ 13 1 ¨ 11 ` 2 ¨ 14 1 ¨ 12 ` 2 ¨ 15

3 ¨ 10 ` 4 ¨ 13 3 ¨ 11 ` 4 ¨ 14 4 ¨ 12 ` 4 ¨ 15

5 ¨ 10 ` 6 ¨ 13 5 ¨ 11 ` 6 ¨ 14 5 ¨ 12 ` 6 ¨ 15

˛

‹

‚

3 ˆ 2 2 ˆ 3 3 ˆ 3

CAREFUL! In general, AB ‰ BA. Indeed, for most size of matrices, these products are not both
defined. But even for square matrices, it is not the case:

Example 1.57:
˜

1 2

3 4

¸˜

1 0

0 2

¸

“

˜

1 4

3 8

¸

but
˜

1 0

0 2

¸˜

1 2

3 4

¸

“

˜

1 2

6 8

¸

.
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There is one matrix which is very easy to multiply by:

Proposition 1.58: (Product with identity matrix)
If A is an m ˆ n matrix, then AIn “ A and ImA “ A: multiplying by an identity matrix (of
the correct size) does not change a matrix.

You can think of this as the matrix equivalent of multiplying by 1.

Proof. By definition of matrix multiplication, pAInqij “
n
ř

k“1

AikpInqkj . But pInqkj “ 0 when

k ‰ j, and pInqjj “ 1. So this sum reduces to pAInqij “
n
ř

k“1

AikpInqkj “ AijpInqjj “ Aij . So A

and AIn have exactly the same entries (and the same size), so A “ AIn.
Similarly for ImA. □

When it says “Similarly” in a proof, this is a “hidden exercise”: you can test whether you really
understand what is going on by trying to do that part yourself. First try to do it without looking
at the previous part of the proof, and only use that as a hint if you get stuck.
When we multiply more than two matrices, it does not matter how we set brackets:

Proposition 1.59: (Associativity of matrix multiplication)
Matrix multiplication is associative: pABqC “ ApBCq for any matrices whose sizes make this
multiplication possible.

Proof. First we can work out that the sizes of pABqC and ApBCq must be the same. (Ex-
ercise.)
Let’s work out an entry of the expressions on both sides.

ppABqCqij “
ÿ

k

pABqikCkj “
ÿ

k

˜

ÿ

s

AisBsk

¸

Ckj “
ÿ

k

ÿ

s

AisBskCkj

where the last step is multiplying out the bracket.

pApBCqqij “
ÿ

s

AispBCqsj “
ÿ

s

Ais

˜

ÿ

k

BskCkj

¸

“
ÿ

s

ÿ

k

AisBskCkj

We can see that both expressions are the same, so ApBCq “ pABqC. □

We can think of this result as saying: When multiplying several matrices, we don’t need brackets.

Exercise 1.60: Let A be m ˆ r, B be r ˆ l and C be l ˆ n. Write out the above proof with
expanded summations. E.g.

ppABqCqij “ pABqi1C1j ` pABqi2C2j ` pABqi3C3j ` ¨ ¨ ¨ ` pABqilClj

and then the same for each pABqik entry and so on.
Purpose of the exercise: see how convoluted matrix multiplication can get; this is not as obvious
a result as pA ` Bq ` C “ A ` pB ` Cq! Also see the advantage of the summation notation.

Given a square matrix, we can multiply it with itself again and again:

Definition 1.61: If A is a square matrix, then the kth power of A is

Ak “ AA ¨ ¨ ¨A,

the product of k copies of A. We define A0 “ I.

Proposition 1.62: (Transpose of product)
pABqT “ BTAT for all matrices A and B for which the product AB is defined.
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Proof. First we have to verify that pABqT and BTAT have the same size. (Exercise.)
Then we look at an entry.

ppABqT qij “ pABqji “
ÿ

k

AjkBki

and

pBTAT qij “
ÿ

k

pBT qikpAT qkj “
ÿ

k

BkiAjk.

As both expressions are the same, we have pABqT “ BTAT . □

Example 1.63:
˜˜

1 2

1 ´1

¸˜

1 0

0 2

¸¸T

“

˜

1 4

1 ´2

¸T

“

˜

1 1

4 ´2

¸

but
˜

1 2

1 ´1

¸T ˜

1 0

0 2

¸T

“

˜

1 1

2 ´1

¸˜

1 0

0 2

¸

“

˜

1 2

2 ´1

¸

.

On the other hand
˜

1 0

0 2

¸T ˜

1 2

1 ´1

¸T

“

˜

1 0

0 2

¸˜

1 1

2 ´1

¸

“

˜

1 1

4 ´2

¸

.

If you ever need to work out what pABqT might be and can’t quite remember, then taking non-
square matrices and working out the relevant sizes can help you work out what it must be.

Example 1.64:

˜

1 2 3

4 5 6

¸

¨

˚

˝

10 11 12 13

14 15 16 17

18 19 20 21

˛

‹

‚

“ AB

2 ˆ 3 3 ˆ 4

can be multiplied.
¨

˚

˚

˚

˝

10 14 18

11 15 19

12 16 20

13 17 21

˛

‹

‹

‹

‚

¨

˚

˝

1 4

2 5

3 6

˛

‹

‚

“ BTAT

4 ˆ 3 3 ˆ 2

can also be multiplied, but

¨

˚

˝

1 4

2 5

3 6

˛

‹

‚

¨

˚

˚

˚

˝

10 14 18

11 15 19

12 16 20

13 17 21

˛

‹

‹

‹

‚

“ ATBT

3 ˆ 2 4 ˆ 3

cannot be multiplied: the sizes don’t fit.

We saw that a matrix can act as a function, so what happens when we multiply two matrices?

Definition 1.65: Given any functions f : X ÝÑ Y and g : Y ÝÑ Z,
the function g˝f : X ÝÑ Z defined by pg˝fqpxq “ gpfpxqq is the com-
posite of g and f .

X
f ,2

g˝f �%

Y

g

��
Z
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This composite is just doing first f and then g. Notice that when we write g˝f , we do f first: it
is easy to remember if you imagine applying it to an element x, as the f is next to the x.

Proposition 1.66: (Composite matrix transformation)
Given two matrices A P Mm,r and B P Mr,n, the composite of
their matrix transformations TA : Rr ÝÑ Rm and TB : Rn ÝÑ Rr is
the matrix transformation of the product:

TAB “ TA˝TB : Rn ÝÑ Rm.

Rn TB ,2

TAB �&

Rr

TA

��
Rm

Proof. For any v P Rn, we have TABpvq “ ABv, and also pTA˝TBqpvq “ TApTBpvqq “ ABv.
so TAB “ TA˝TB . □

Finally, we’ve already mentioned that linear combinations are one of the most important concepts
in Linear Algebra, and matrix multiplication preserves linear combinations.

Proposition 1.67: (Matrix multiplication is linear)
Matrix multiplication preserves linear combinations. That is, if A,A1 are m ˆ r matrices and
B,B1 are r ˆ n matrices, and λ, µ P R, then

ApλB ` µB1q “ λAB ` µAB1 and pλA ` µA1qB “ λAB ` µA1B.

Proof. To show the two matrices on each side of the equation are equal, we have to check
that they have the same size, and that all entries agree.
A is an mˆ r matrix, and λB `µB1 is an r ˆn matrix, since both B and B1 are. So ApλB `µB1q

is an mˆn matrix. So too are AB and AB1, so λAB `µAB1 is also an mˆn matrix, so the sizes
are the same. We now look at an entry of each:

pApλB ` µB1qqij “

r
ÿ

k“1

AikpλB ` µB1qkj def of matrix mult

“

r
ÿ

k“1

AikpλBkj ` µB1
kjq def of matrix sum

“

r
ÿ

k“1

λAikBkj ` µAikB
1
kj calculating in R

“ pλAB ` µAB1qij def of matrix mult

Similarly for the second equation. It is a good exercise for you to do the proof of the other
equation: try it without looking at this proof, and only use it as hints. This will help you see if
you understand, and find the points where you might need to ask some more questions or go over
something again.
You could also try writing out the summations in long-hand. Maybe try it for 2 ˆ 2 matrices. □

Corollary 1.68: In particular, matrix transformations are linear. That is,

TApλu ` µvq “ λTApuq ` µTApvq.

Proof. This is because matrix transformations are calculated with matrix multiplication:
TApvq “ Av. □

We won’t use this very much now, but it is one of the most important concepts of Linear Algebra,
so seeing it several times will hopefully help you to become friends with it.

F. Vectors and Matrices: Study guide

At the end of each Chapter, you will see a study guide like this, with concept review and skills.
The concept review lists concepts you need to understand: can you write down the definition or
statement of this? Can you give some examples and counterexamples of this concept?
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The skills are things you need to be able to do, so you need to practise them.
You can use these lists to help you check if you have covered the important things of the section,
while you’re learning it and also when you come to revision.

Concept review.

˛ Vectors in R2, R3 and Rn.
˛ Linear combination.
˛ Lines and planes in R2, R3 and Rn.
˛ (Informally) degree of freedom, e.g. of lines, planes.
˛ Parallel vectors.
˛ Vector space axioms for Rn.
˛ Subspaces of Rn.
˛ Matrices, size of matrix, square matrix.
˛ Matrix as function: matrix transformation.
˛ Transpose matrix.
˛ Linearity of matrix multiplication.

Skills.

˛ Add vectors, multiply a vector by a scalar, form linear combinations of vectors.
˛ Determine whether a given set is a line or a plane, and whether it goes through 0 or not.
˛ Determine whether two vectors are parallel.
˛ Determine whether a given set is a subspace of Rn.
˛ Add matrices, multiply a matrix by a scalar, form linear combinations of matrices.
˛ Form the transpose of a matrix.
˛ Multiply a matrix and a vector.
˛ Multiplly two matrices of matching size.
˛ Determine whether two matrices can be multiplied or not.
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CHAPTER 2

Linear Systems

Another way to view matrices is that they represent a linear system. We will see in this chapter
what a linear system is, how we can solve it using matrices, and what form the solutions take.
One reason for doing this is that it is a very efficient way of solving linear systems. Also, when
we learn more linear algebra theory later in the course, we will come across the need to solve such
linear systems again and again in different contexts. So this chapter will give you an essential tool
for the rest of the course, and beyond.

A. Linear equations

Definition 2.1: A linear equation in n unknowns (or variables) is an equation which
only involves scalar multiples of the unknowns on one side of the equation, and a constant on
the other side:

a1x1 ` a2x2 ` ¨ ¨ ¨ ` anxn “ b

with x1, ¨ ¨ ¨ , xn the unknowns, and a1, ¨ ¨ ¨ , an, b P R.
A linear equation is called homogeneous if b “ 0.

Examples 2.2: ˛ 3x´4y “ 0 and 3x´4y “ 8 are linear equations with two unknowns/variables.
The first is homogeneous, the second is not: it is inhomogeneous.

˛ πx1 ` 3.5x2 ´ 4x3 ` x4 “
?
3 is a linear equation with four unknowns.

Examples 2.3: (Counterexamples) The following are not linear:

˛ x2 ` 2y “ 0, xy “ 1: products of variables are not allowed.
˛ 2x ´

?
y “ 1: no roots of variables are allowed.

˛ sinpxq ´ cospyq “ 1: functions like sine, cos, log etc are not allowed in linear equations.
˛ ex “ 2: unknowns can’t appear in exponents.

We are interested in the solutions to such linear equations. Let’s see what these solutions have to
do with lines.

Example 2.4: The linear equation 3x ´ 4y “ 0 has many solutions: we can pick y to be what we

want, and then x is determined. For example,

˜

x

y

¸

“

˜

4

3

¸

is a solution. Any other solution is a

multiple of this:

˜

4t

3t

¸

, or t

˜

4

3

¸

. So the set of all solutions is a line

#

t

˜

4

3

¸
ˇ

ˇ

ˇ

ˇ

ˇ

t P R

+

.

If we now take the same equation but make it inhomogeneous, we will get something similar:

3x ´ 4y “ 2 has solutions

#˜

2

1

¸

` t

˜

4

3

¸
ˇ

ˇ

ˇ

ˇ

ˇ

t P R

+

. This is a line which does not go through zero,

but is parallel to the line that solved the homogeneous equation.

˜

2

1

¸

is a particular solution of

the inhomogeneous equation, but since 3 ¨ 4´ 4 ¨ 3 “ 0, adding a multiple of

˜

4

3

¸

to this particular

solution still gives a solution: 3p2 ` t ¨ 4q ´ 4p1 ` t ¨ 3q “ p3 ¨ 2 ´ 4 ¨ 1q ` tp3 ¨ 4 ´ 4 ¨ 3q “ 2 ` t ¨ 0.
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As we have two variables and one equation, we have “one degree of freedom”: we can choose one
of the two variables, and then the other is determined by the equation. “One degree of freedom”
corresponds to a line.

Example 2.5: The solutions to a linear equation with three variables form a plane rather than a
line: now we have “two degrees of freedom.”

2x1 ´ 3x2 ` 6x3 “ 0 has solutions

$

’

&

’

%

¨

˚

˝

3
2s ´ 3t

s

t

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s, t P R

,

/

.

/

-

: we can choose two of the variables,

x2 “ s and x3 “ t, and then x1 is determined by the equation.

If we write this as

$

’

&

’

%

s ¨

¨

˚

˝

3
2

1

0

˛

‹

‚

` t

¨

˚

˝

´3

0

1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s, t P R

,

/

.

/

-

, we can see that this is indeed a plane. We can

choose s and t independently, which gives us two possible solution vectors which are not parallel.

What happens if we have several such equations? Then a solution to the whole system is the
intersection of all the solutions to the individual equations.

Definition 2.6: A system of linear equations is a collection of one or more linear equations.
Such a system is called homogeneous if all the equations in it are homogeneous. A solution
of a system of linear equations is an n-tuple x1, x2, . . ., xn which solves all equations
simultaneously.

Notice that one solution of the system needs to provide a value for each unknown: all these together

form one solution. We can think of a solution as a vector

¨

˚

˚

˚

˚

˝

x1

x2

...

xn

˛

‹

‹

‹

‹

‚

.

Examples 2.7: ˛ Consider the linear system

3x ´ 4y “ 2

2x ´ y “ 0

These two equations represent two lines:
#˜

2

1

¸

` t

˜

4

3

¸+

and

#

s

˜

1

2

¸+

A solution to the system is an intersection of the two lines. You know how to solve such
a system from school: the second equation gives y “ 2x, and using this in the first, we

get 3x ´ 8x “ 2, or x “ ´ 2
5 . Then y “ ´ 4

5 . So

˜

´ 2
5

´ 4
5

¸

is the solution to this sytem.

There is only one solution.
˛ This system has no solutions:

3x ´ 4y “ 0

6x ´ 8y “ 4

The two lines are parallel, so they don’t intersect.
˛ This system

3x ´ 4y “ 2

6x ´ 8y “ 4
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has a whole line of solutions: the second equation is just twice the first equation, so both
equations represent the line

#˜

2

1

¸

` t

˜

4

3

¸+

,

which gives all solutions to this system of equations.
Later we will investigate further when a linear system has a unique solution, when it has no solution
and when it has infinitely many solutions, like the line in the third example.

Definition 2.8: A linear system is consistent if it has some solution. A linear system is
called inconsistent if it has no solution.
If a linear system has infinitely many solutions, then a parametric expression from which all
solutions can be obtained by choosing values for the parameters is called a general solution.

Example 2.9: The general solution to 3x ´ 4y “ 2

6x ´ 8y “ 4
is

#˜

2

1

¸

` t

˜

4

3

¸+

.

In the previous example, the first and last linear system are consistent, and the middle one is
inconsistent.

The aim of this chapter is to learn a systematic way of solving such systems of equations, using
matrices.

Notation 2.10: A system of linear equations

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1n´1xn´1 ` a1nxn “ b1

a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2n´1xn´1 ` a2nxn “ b2

...

am1x1 ` am2x2 ` ¨ ¨ ¨ ` amn´1xn´1 ` amnxn “ bm

can be represented in matrix form as

¨

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n´1 a1n

a21 a22 ¨ ¨ ¨ a2n´1 a2n
...

... ¨ ¨ ¨
...

...

am1 am2 ¨ ¨ ¨ amn´1 amn

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

b1

b2
...

bm

˛

‹

‹

‹

‹

‚

Here all the coefficients of the variables are collected in a matrix. If A is this matrix, and
we write x for the vector of variables and b for the vector on the right hand side, the system
becomes a matrix equation

Ax “ b.

Remember how matrix multiplication works: if you multiply the left hand side out, you literally
get the left hand sides of all the equations.

¨

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n´1 a1n

a21 a22 ¨ ¨ ¨ a2n´1 a2n
...

... ¨ ¨ ¨
...

...

am1 am2 ¨ ¨ ¨ amn´1 amn

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1n´1xn´1 ` a1nxn

a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2n´1xn´1 ` a2nxn

...

am1x1 ` am2x2 ` ¨ ¨ ¨ ` amn´1xn´1 ` amnxn

˛

‹

‹

‹

‹

‚
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You can see that the matrix has as many columns as there are variables or unknowns, and as many
rows as there are equations. Each row of the matrix represents one equation (or at least the left
hand side of it).
So if you have a homogeneous system, you know all you need to know about it just from the matrix

¨

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n´1 a1n

a21 a22 ¨ ¨ ¨ a2n´1 a2n
...

... ¨ ¨ ¨
...

...

am1 am2 ¨ ¨ ¨ amn´1 amn

˛

‹

‹

‹

‹

‚

.

So we can use this matrix as a short hand notation for the corresponding homogeneous system of
equations. If we want to put in the bs on the right hand side as well, we can do it:

Definition 2.11: An augmented matrix is a matrix of the form
¨

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n´1 a1n

a21 a22 ¨ ¨ ¨ a2n´1 a2n
...

... ¨ ¨ ¨
...

...

am1 am2 ¨ ¨ ¨ amn´1 amn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1

b2
...

bm

˛

‹

‹

‹

‹

‚

.

So we just add the column of bs on the right hand side, and we use the vertical line to remember
that they are on the other side of the equation.

Notation 2.12: A homogeneous system of linear equations

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1n´1xn´1 ` a1nxn “ 0

a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2n´1xn´1 ` a2nxn “ 0

...

am1x1 ` am2x2 ` ¨ ¨ ¨ ` amn´1xn´1 ` amnxn “ 0

can be represented by a matrix

A “

¨

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n´1 a1n

a21 a22 ¨ ¨ ¨ a2n´1 a2n
...

... ¨ ¨ ¨
...

...

am1 am2 ¨ ¨ ¨ amn´1 amn

˛

‹

‹

‹

‹

‚

.

An inhomogeneous system

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1n´1xn´1 ` a1nxn “ b1

a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2n´1xn´1 ` a2nxn “ b2

...

am1x1 ` am2x2 ` ¨ ¨ ¨ ` amn´1xn´1 ` amnxn “ bm

can be represented by an augmented matrix
¨

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n´1 a1n

a21 a22 ¨ ¨ ¨ a2n´1 a2n
...

... ¨ ¨ ¨
...

...

am1 am2 ¨ ¨ ¨ amn´1 amn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1

b2
...

bm

˛

‹

‹

‹

‹

‚

.

Each row of the matrix represents an equation.

You see it is short hand because we’re not writing out the variables x1, . . ., xn: their presence is
implied by the number of columns in the left hand part of the matrix.
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Examples 2.13: Here are some linear systems and their corresponding (augmented) matrices.

3x1 ´ x2 “ 0

2x1 ´ 4x2 “ 0

´5x1 ` 6x2 “ 0

x1 ` 2x2 ` x3 “ 2

´x1 ´ x2 ` x3 “ 1

3x1 ´ x2 ` 4x3 “ 2

´x1 ´ 3x2 `
?
2x4 “ 0

π x2 ´ 3x3 “ ´5

¨

˚

˝

3 ´1

2 ´4

´5 6

˛

‹

‚

˜

1 2 1

´1 ´1 1

ˇ

ˇ

ˇ

ˇ

ˇ

2

1

¸

¨

˚

˝

3 ´1 4 0

´1 ´3 0
?
2

0 π ´3 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

0

´5

˛

‹

‚

What is the easiest kind of linear system to solve? One which already gives all the solutions:

x1 “ b1

x2 “ b2
. . .

...
...

xn “ bn

¨

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1

b2
...

bn

˛

‹

‹

‹

‹

‚

We can see that in this case we have the same number of equations as we have unknowns, so we
get a square matrix (if we leave out the bs). But only the diagonal entries of this square matrix
are non-zero.

Definition 2.14: A diagonal matrix is a square matrix in which only the diagonal entries
are non-zero:

¨

˚

˚

˚

˚

˚

˚

˝

a11 0 ¨ ¨ ¨ 0 0

0 a22 ¨ ¨ ¨ 0 0
...

...
. . .

...
...

0 0 ¨ ¨ ¨ an´1n´1 0

0 0 ¨ ¨ ¨ 0 ann

˛

‹

‹

‹

‹

‹

‹

‚

Clearly we can solve it just as easily if the diagonal entries are not 1: we just have to divide the bi
by aii (as long as aii ‰ 0).
The next best system is one like this:

x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1

x2 ` ¨ ¨ ¨ ` a2nxn “ b2
. . .

...
...

xn “ bn

¨

˚

˚

˚

˚

˝

1 a12 ¨ ¨ ¨ a1n

0 1 ¨ ¨ ¨ a2n
...

...
. . .

...

0 0 ¨ ¨ ¨ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1

b2
...

bn

˛

‹

‹

‹

‹

‚

We can substitute the last equation into the one before to get xn´1, then substitute that into the
previous one, and so on upwards until we have all the solutions. Again, we see it doesn’t matter
so much if the diagonal entries are not 1.
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Definition 2.15: An upper triangular matrix is a square matrix in which all entries below
the diagonal are zero:

¨

˚

˚

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n´1 a1n

0 a22 ¨ ¨ ¨ a2n´1 a2n
...

...
. . .

...
...

0 0 ¨ ¨ ¨ an´1n´1 an´1n

0 0 ¨ ¨ ¨ 0 ann

˛

‹

‹

‹

‹

‹

‹

‚

A lower triangular matrix is a square matrix in which all entries above the diagonal are
zero.

So our aim is to transform any linear system into one of these upper triangular ones, or a diagonal
one, and then the solution can be easily determined or read off. Or at least as close to this as
possible: not all systems can be transformed quite into this nice form. We will see what the closest
possible is a little later.

B. Elementary row operations

There are three very simple types of operations we can perform on a system of equations, which
are enough to transform the system into a diagonal form which gives the solutions. Any operation
performed on the rows of the augmented matrix is an operation performed on the equations of the
corresponding linear system.

Definition 2.16: The three types of elementary row operations are

1. Multiply one row by a non-zero scalar.
2. Swap two rows.
3. Add a multiple of one row to another row.

None of these operations change the solutions to a linear system.

Example 2.17: Applying the elemetary row operations to the augmented matrix corresponds to
manipulating the equations of the linear system.

7x1 ` 3x2 “ 3

x1 ` x2 “ 1

˜

7 3

1 1

ˇ

ˇ

ˇ

ˇ

ˇ

3

1

¸

Swap first and second row:

x1 ` x2 “ 1

7x1 ` 3x2 “ 3

˜

1 1

7 3

ˇ

ˇ

ˇ

ˇ

ˇ

1

3

¸

Add ´7 times first row to second row:

x1 ` x2 “ 1

0 ´ 4x2 “ ´4

˜

1 1

0 ´4

ˇ

ˇ

ˇ

ˇ

ˇ

1

´4

¸

Multiply second row by ´ 1
4 (or divide by ´4):

x1 ` x2 “ 1

x2 “ 1

˜

1 1

0 1

ˇ

ˇ

ˇ

ˇ

ˇ

1

1

¸

Add ´1 times second row from first row:

x1 “ 0

x2 “ 1

˜

1 0

0 1

ˇ

ˇ

ˇ

ˇ

ˇ

0

1

¸

So this system has a unique solution,

˜

x1

x2

¸

“

˜

0

1

¸

.

You can see that using the augmented matrices rather than the equations is more efficient and
visibly much clearer.
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In Linear Algebra, you can often check your own solutions. For example, take the solution we have
just arrived at and check it in the original equations:

7 ¨ 0 ` 3 ¨ 1 “ 3

0 ` 1 “ 1

all checks out.

You can also see that all these elementary row operations can be reversed, so we never lose any
information.
Careful! Make sure you never multiply a row by 0! This deletes all information from that row.

Definition 2.18: If matrix B can be obtained from matrix A by elementary row operations,
we say that A and B are row equivalent.

As every elementary row operation can be done “in the other direction”, this is a symmetric
relationship: if B can be obtained from A via elementary row operations, then A can also be
obtained from B via elementary row operations.

C. Gauss algorithm

We will now learn an algorithm that tells us which elementary row operations to do to transform
a linear system into a form where a solution can easily be read off.
We saw that the nicest would be a diagonal form, but this is not always possible.

Example 2.19: The system

x1 ` 2x2 ` x3 “ 2

´x1 ´ x2 ` x3 “ 1

˜

1 2 1

´1 ´1 1

ˇ

ˇ

ˇ

ˇ

ˇ

2

1

¸

cannot be made diagonal or upper triangular: it does not have enough equations.
The next best thing is

˜

1 2 1

´1 ´1 1

ˇ

ˇ

ˇ

ˇ

ˇ

2

1

¸

II`I
ÝÑ

˜

1 2 1

0 1 2

ˇ

ˇ

ˇ

ˇ

ˇ

2

3

¸

I´2II
ÝÑ

˜

1 0 ´3

0 1 2

ˇ

ˇ

ˇ

ˇ

ˇ

´4

3

¸

corresponding to

x1 ´ 3x3 “ ´4

x2 ` 2x3 “ 3

We can then choose x3 to be whatever we like (say 1, or a parameter t), and then read off x1 and
x2 from the above.
Notice that we can keep track of the elementary row operations in each step: here the roman
numerals represent the rows.

Definition 2.20: A matrix is in (row) echelon form if the following hold:

˛ If a row does not consist entirely of zeros, then the first non-zero entry in the row is
a 1. We call this a leading 1.

˛ Any rows consisting entirely of zeros are grouped together at the bottom of the
matrix.

˛ In any two successive non-zero rows, the leading 1 in the lower row occurs further to
the right than the leading 1 in the higher row.

If in addition each column that contains a leading 1 has zeros in every other entry, then the
matrix is in reduced (row) echelon form.
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A matrix in echelon form looks like this:

¨

˚

˚

˚

˚

˚

˚

˝

1 ˚ ˚ ¨ ¨ ¨ ˚ ˚ ˚ ¨ ¨ ¨

0 1 ˚ ¨ ¨ ¨ ˚ ˚ ˚ ¨ ¨ ¨

0 0 0 ¨ ¨ ¨ 0 1 ˚ ¨ ¨ ¨

0 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

...
...

...
...

...
...

˛

‹

‹

‹

‹

‹

‹

‚

A ˚ represents an arbitrary entry. A matrix in reduced row echelon forms has zeros above all the
1s:

¨

˚

˚

˚

˚

˚

˚

˝

1 0 ˚ ¨ ¨ ¨ ˚ 0 ˚ ¨ ¨ ¨

0 1 ˚ ¨ ¨ ¨ ˚ 0 ˚ ¨ ¨ ¨

0 0 0 ¨ ¨ ¨ 0 1 ˚ ¨ ¨ ¨

0 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

...
...

...
...

...
...

˛

‹

‹

‹

‹

‹

‹

‚

For an augmented matrix, we just look at the part on the left hand side of the line to determine
whether it is in echelon form or not.

Examples 2.21: The following matrices are in echelon form, but not reduced.

˛

¨

˚

˝

1 8 ´2

0 1 ´2

0 0 1

˛

‹

‚

. ˛

˜

1 3 2

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

1

1

¸

˛

¨

˚

˚

˚

˝

0 1 2 4

0 0 0 1

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

˛

¨

˚

˝

1 ´1 2 3

0 1 1 2

0 0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

´1

0

˛

‹

‚

Exercise 2.22: Bring the above matrices into reduced row echelon form.

Examples 2.23: The following matrices are in reduced echelon form.

˛

¨

˚

˝

1 0 0

0 1 2

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0

0

1

˛

‹

‚

˛

¨

˚

˝

1 0 0 0

0 1 2 0

0 0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

2

´1

˛

‹

‚

˛

¨

˚

˝

1 0 2

0 1 ´1

0 0 0

˛

‹

‚

˛

˜

1 ´5 1

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

4

0

¸

Exercise 2.24: Determine whether the systems above are consistent (whether they have a solu-
tion), and if yes, give the general form of the solution.

Gauss Algorithm: The Gauss algorithm transforms a matrix into row echelon form by the
folllowing steps:

˛ Locate the left-most column that does not consist entirely of zeros.
˛ Swap rows to bring a non-zero entry to the top of the column you identified in the
first step. We call this non-zero top entry the pivot element.

˛ Divide the first row by the pivot element to obtain a 1 at the top of the column.
˛ Add suitable multiples of the top row to the rows below so that the entries below
the leading 1 become zeros.

˛ Now cover the top row of the matrix and begin again from the start, now applying
the steps to the submatrix that remains.

˛ Continue this way until the matrix is in row echelon form.

Informally, what the Gauss algorithm does is to simplify the equations, get rid of any superfluous
ones (which will transform into zero rows), and get the rest into a form where a solution can be
read off more easily.
This is best seen on examples:
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Examples 2.25: ˛ We use the Gauss algorithm on the following matrix. There is already
a 1 in the top of the first column, so we clear the entries below it:

¨

˚

˝

1 ´2 1

0 2 ´8

´4 5 9

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0

8

´9

˛

‹

‚

III`4I
ÝÑ

¨

˚

˝

1 ´2 1

0 2 ´8

0 ´3 13

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0

8

´9

˛

‹

‚

Now we cover the first row and continue with the rest of the matrix. There is a 2 at the
(new) top of the second column, so we divide the second row by 2. Then we clear the
entry below that in the third row.

¨

˚

˝

1 ´2 1

0 2 ´8

0 ´3 13

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0

8

´9

˛

‹

‚

1
2 II

ÝÑ

¨

˚

˝

1 ´2 1

0 1 ´4

0 ´3 13

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0

4

´9

˛

‹

‚

III`3II
ÝÑ

¨

˚

˝

1 ´2 1

0 1 ´4

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0

4

3

˛

‹

‚

Now the matrix is in echelon form.
˛ This time we find that the top entry of the first row is 0, so we have to switch another
row into the top, and then divide that row so we get the leading 1. Then we clear the
entries below it.

¨

˚

˝

0 1 ´4

2 ´3 2

5 ´8 7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

8

1

1

˛

‹

‚

IØII
ÝÑ

¨

˚

˝

2 ´3 2

0 1 ´4

5 ´8 7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

8

1

˛

‹

‚

1
2 I

ÝÑ

¨

˚

˝

1 ´ 3
2 1

0 1 ´4

5 ´8 7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

8

1

˛

‹

‚

III´5I
ÝÑ

¨

˚

˝

1 ´ 3
2 1

0 1 ´4

0 ´ 1
2 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

8

´ 3
2

˛

‹

‚

Now we repeat for the last two rows: there is already a leading 1 in the second column,
so we clear the entry below it:

¨

˚

˝

1 ´ 3
2 1

0 1 ´4

0 ´ 1
2 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

8

´ 3
2

˛

‹

‚

III` 1
2 II

ÝÑ

¨

˚

˝

1 ´ 3
2 1

0 1 ´4

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

8
5
2

˛

‹

‚

Now the matrix (up to the vertical line) is in row echelon form. We see that this system
is inconsistent: the last line says 0 ¨x1 `0 ¨x2 `0 ¨x3 “ 5

2 , which is of course not possible.

Once a matrix is in echelon form, we can work out the solution. Many computer systems that
solve systems of equations for huge matrices use this method.
However, for us as humans working usually on reasonably small (up to 5 ˆ 5 or so) matrices, it is
extremely helpful to keep going until the matrix is in reduced row echelon form, as we can then
just read off the solutions.

Gauss-Jordan Algorithm: The Gauss-Jordan algorithm transforms a matrix into reduced
row echelon form by the following steps:

˛ Use the Gauss algorithm to bring the matrix into echelon form.
˛ Working upwards from the lowest non-zero row, clear the entries above each leading 1.

Examples 2.26: Finishing off the two examples above:

˛ We clear first the third column and then the second column.
¨

˚

˝

1 ´2 1

0 1 ´4

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0

4

3

˛

‹

‚

II`4III,I´III
ÝÑ

¨

˚

˝

1 ´2 0

0 1 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´3

16

3

˛

‹

‚

I`2II
ÝÑ

¨

˚

˝

1 0 0

0 1 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

29

16

3

˛

‹

‚

So the unique solution to this system is

¨

˚

˝

29

16

3

˛

‹

‚

.
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˛ Since the second system we had was inconsistent, it makes no sense to keep going, as it
doesn’t have a solution. So let’s change it slightly so that the echelon form is

¨

˚

˝

1 ´ 3
2 1

0 1 ´4

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
2

8

0

˛

‹

‚

I` 3
2 II

ÝÑ

¨

˚

˝

1 0 ´5

0 1 ´4

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

25
2

8

0

˛

‹

‚

This is now in reduced row echelon form, and there is one column that has no leading
1s, highlighted in green. Such a column means that the corresponding variable, here x3,
can be anything, so we can make it a parameter, x3 “ t. We can choose that variable
freely. This is why I informally call this column a freedom column, or a stuff column,
because it has stuff in it that we can’t clear.

So how do we read off our solution: let’s first transform it back into equations so we
can explain what’s going on.

x1 ´ 5x3 “
25

2
x2 ´ 4x3 “ 8

Choosing x3 “ t and putting it on the other side, we get

x1 “
25

2
` 5t

x2 “ 8 ` 4t

So the solution set to this system is
$

’

&

’

%

¨

˚

˝

25
2

8

0

˛

‹

‚

` t

¨

˚

˝

5

4

1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t P R

,

/

.

/

-

.

˛ Let’s do one more example where we get two freedom columns. For simplicity we’ll make
it a homogeneous system.
¨

˚

˚

˚

˝

1 2 6 8

2 ´1 2 ´4

3 1 8 4

1 ´3 ´4 ´12

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 2 6 8

0 ´5 ´10 ´20

0 ´5 ´10 ´20

0 ´5 ´10 ´20

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 2 6 8

0 ´5 ´10 ´20

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 2 6 8

0 1 2 4

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 0 2 0

0 1 2 4

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

Now we have two “stuff” columns, one green (third column), one purple (fourth column).
So we can choose x3 “ s and x4 “ t. So our general solution is

¨

˚

˚

˚

˝

x1

x2

x3

x4

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

´2s

´2s ´ 4t

s

t

˛

‹

‹

‹

‚

or we can write it as a solution set:
$

’

’

’

&

’

’

’

%

s

¨

˚

˚

˚

˝

´2

´2

1

0

˛

‹

‹

‹

‚

` t

¨

˚

˚

˚

˝

0

´4

0

1

˛

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s, t P R

,

/

/

/

.

/

/

/

-

.

(See videos on Blackboard for more steps.)
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Example 2.27: (Worked example: Linear system with parameter) For which a does the
following linear system have 0, 1 or infinitely many solutions? For each consistent case, find all
solutions.

x1 ` 3x2 ´ 2x3 “ 7

2x2 ´ 4x3 “ 8

x1 ` 5x2 ` pa2 ´ 7qx3 “ a ` 14

As usual, we first write it as an augmented matrix, and start doing the Gauss algorithm.
¨

˚

˝

1 3 ´2

0 2 ´4

1 5 a2 ´ 7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7

8

a ` 14

˛

‹

‚

III´I
ÝÑ

¨

˚

˝

1 3 ´2

0 2 ´4

0 2 a2 ´ 5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7

8

a ` 7

˛

‹

‚

1
2 II

ÝÑ

¨

˚

˝

1 3 ´2

0 1 ´2

0 2 a2 ´ 5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7

4

a ` 7

˛

‹

‚

III´2II
ÝÑ

¨

˚

˝

1 3 ´2

0 1 ´2

0 0 a2 ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7

4

a ´ 1

˛

‹

‚

“

¨

˚

˝

1 3 ´2

0 1 ´2

0 0 pa ´ 1qpa ` 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7

4

a ´ 1

˛

‹

‚

At this stage we have to consider separate cases: do we get a leading 1 in the third row or not?

˛ Case a “ ´1: In this case we have
¨

˚

˝

1 3 ´2

0 1 ´2

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7

4

´2

˛

‹

‚

which is an inconsistent system: there are no solutions.
˛ Case a “ 1: In this case the third row becomes a zero row:

¨

˚

˝

1 3 ´2

0 1 ´2

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7

4

0

˛

‹

‚

I´3II
ÝÑ

¨

˚

˝

1 0 4

0 1 ´2

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´5

4

0

˛

‹

‚

So we can finish the Gauss-Jordan algorithm. So solutions here are
$

’

&

’

%

¨

˚

˝

´5

4

0

˛

‹

‚

` t

¨

˚

˝

´4

2

1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t P R

,

/

.

/

-

.

˛ Case a ‰ ˘1: In this case we can divide by a2 ´ 1:
¨

˚

˝

1 3 ´2

0 1 ´2

0 0 a2 ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7

4

a ´ 1

˛

‹

‚

1
a2´1

III

ÝÑ

¨

˚

˝

1 3 ´2

0 1 ´2

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7

4
1

a`1

˛

‹

‚

II`2III,I`2III
ÝÑ

¨

˚

˝

1 3 0

0 1 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7 ` 2
a`1

4 ` 2
a`1
1

a`1

˛

‹

‚

I´3II
ÝÑ

¨

˚

˝

1 0 0

0 1 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7a`9
a`1 ´ 3 4a`6

a`1
4a`6
a`1
1

a`1

˛

‹

‚

So the unique solution is
¨

˚

˝

x1

x2

x3

˛

‹

‚

“

¨

˚

˝

´5a´9
a`1
4a`6
a`1
1

a`1

˛

‹

‚

“
1

a ` 1

¨

˚

˝

´p5a ` 9q

4a ` 6

1

˛

‹

‚

.

D. Numbers of solutions

Now that we know how to solve a linear system using the Gauss-Jordan algorithm, let’s think
about how many solutions such a linear system can have.
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Proposition 2.28: (Solutions of homogeneous system)
A homogeneous linear system always has at least one solution: the zero vector.
If a homogeneous linear system has more than one solution, then it has infinitely many solu-
tions.

Proof. Let’s say our homogenous linear system has n variables, x1, . . . , xn. Let x “

¨

˚

˚

˝

x1

...

xn

˛

‹

‹

‚

.

Then we can write the homogeneous linear system as Ax “ 0 for some matrix A with n columns
and as many rows as our system has equations.

Setting x “

¨

˚

˚

˝

0
...

0

˛

‹

‹

‚

“ 0, the zero vector, is definitely a solution to Ax “ 0.

It could be that this is the only solution: this corresponds to the reduced row echelon form of A
having exactly n non-zero rows, each with it’s own leading 1, and then possibly some zero rows.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 1

0 0 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Any other reduced row echelon form of a system with n variables can only have fewer columns with
leading 1s, so it will have at least one column which does not have a leading 1. Any such column
corresponds to a variable which can be assigned any value, which means the general solution has
a free parameter. So there are infinitely many solutions.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ˚ ¨ ¨ ¨ ˚ 0 ˚ ¨ ¨ ¨

0 1 ˚ ¨ ¨ ¨ ˚ 0 ˚ ¨ ¨ ¨

0 0 0 ¨ ¨ ¨ 0 1 ˚ ¨ ¨ ¨

0 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

...
...

...
...

...
...

0 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

□

Proposition 2.29: The solutions of a homogeneous linear system with n variables form a
subspace of Rn.

Proof. Let Ax “ 0 be the linear system, so x P Rn. We verify the three conditions for a
subspace, from Proposition 1.28.

˛ The zero vector is a solution of Ax “ 0 (see Prop. 2.28).
˛ If u, v P Rn are solutions, then Au “ 0 and Av “ 0. Then also Apu ` vq “ Au ` Av “

0 ` 0 “ 0 because matrix multiplication is linear (Prop. 1.67).
˛ If u P Rn is a solution and λ P R, then Apλuq “ λAu “ λ ¨ 0 “ 0 as matrix multiplication
is linear.

So the solutions form a subspace of Rn. □
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Proposition 2.30: (Homogeneous and inhomogeneous solutions)
Given a particular solution to an inhomogeneous linear system, then adding any solution of
the corresponding homogeneous linear system gives another solution.

Proof. Let the inhomogeneous linear system be Ax “ b, with b ‰ 0. Suppose a is a particular
solution of this system, i.e. Aa “ b, and that v is a solution to the corresponding homogeneous
system Ax “ 0. Then

Apa ` vq “ Aa ` Av “ b ` 0 “ b

so a ` v is also a solution to the inhomogeneous linear system. □

Proposition 2.31: (Solutions of inhomogeneous system)
An inhomogeneous linear system can have zero, one or infinitely many solutions.

Proof. If the inhomogeneous system is inconsistent, then it has zero solutions. This corres-
ponds to the row echelon form having a zero row with a non-zero entry in the augmented part.

¨

˚

˚

˚

˚

˝

1 ˚ ¨ ¨ ¨ ˚

0 1 ¨ ¨ ¨ ˚

...
...

. . .
...

0 0 ¨ ¨ ¨ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1

b2
...

bm ‰ 0

˛

‹

‹

‹

‹

‚

If the inhomogeneous system does have some solution, then we know that the corresponding homo-
geneous system has 1 or infinitely many solutions (Prop. 2.28), and that adding any of these to the
given one gives a new solution for the inhomogeneous system (Prop. 2.30). So the inhomogeneous
system has either one solution or infinitely many. These options correspond to the same reduced
row echelon forms as were given for the homogeneous systems, with the addition that any zero row
also has a zero in the augmented part.

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 1

0 0 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1

b2
...

bn

0
...

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 ˚ ¨ ¨ ¨ ˚ 0 ˚ ¨ ¨ ¨

0 1 ˚ ¨ ¨ ¨ ˚ 0 ˚ ¨ ¨ ¨

...
...

...
...

...
...

0 0 0 ¨ ¨ ¨ 0 1 ˚ ¨ ¨ ¨

0 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

...
...

...
...

...
...

0 0 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

b1

b2
...

bm

0
...

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

□

Examples 2.32: We have already seen examples of each of these three cases. Look back at them
now.

The above results allow us to answer the following questions:

Exercise 2.33:
Determine whether the statement is true or false.

˛ A homogeneous linear system in n unknowns whose corresponding augmented matrix has
a reduced row echelon form with r leading 1’s has n ´ r free parameters in the general
solution.

˛ All leading 1’s in a matrix in row echelon form must occur in different columns.
˛ If a homogeneous linear system of n equations in n unknowns has a corresponding aug-
mented matrix with a reduced row echelon form containing n leading 1’s, then the linear
system has only the trivial solution.
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˛ If the reduced row echelon form of the augmented matrix for a linear system has a row
of zeros, then the system must have infinitely many solutions.

˛ If a linear system has more unknowns than equations, then it must have infinitely many
solutions.

We will discuss this in lectures and write down explanations and/or examples and counterexamples.

The last one is important enough that we will want to refer to it, so let’s write it as a proposi-
tion.

Proposition 2.34: If a homogeneous linear system has more unknowns than equations, then
it has infinitely many solutions.

Proof. Note that a homogeneous linear system cannot be inconsistent, so it has at least one
solution.
The system Ax “ 0 has matrix of size m ˆ n with m ă n. So its row echelon form can have at
most m leading 1s, as each row can only have one leading 1. As m ă n, this leaves some columns
in which there is no leading 1, which give us free parameters in the general solution. □

E. Linear Systems: Study guide

Concept review.

˛ Linear equation, linear system.
˛ Homogeneous and inhomogeneous linear systems.
˛ Solution to linear system.
˛ Augmented matrix.
˛ Matrix representation of linear system.
˛ Diagonal, upper and lower triangular matrices.
˛ Row echelon form and reduced row echelon form.
˛ Elementary row operations.
˛ Row equivalent matrices.
˛ Gauss and Gauss-Jordan algorithms.
˛ Numbers of solutions of linear systems.

Skills.

˛ Determine whether an equation is linear.
˛ Write a linear system into matrix form.
˛ Determine whether a matrix is in row echelon form, or reduced row echelon form.
˛ Perform elementary row operations on a matrix.
˛ Perform the Gauss algorithm to bring a matrix into row echelon form.
˛ Perform the Gauss-Jordan algorithm to bring a matrix into reduced row echelon form.
˛ Write down the general solution for a linear system which is in reduced row echelon form.
˛ Determine whether an inhomogeneous system is consistent or not.
˛ Find solutions to linear systems using the above methods.
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CHAPTER 3

Inverse Matrices and Determinants

If we have a single equation ax “ b, with a, b real numbers, then we can solve it by dividing the
equation by a, as long as a ‰ 0. We will now see what the equivalent is for matrices.

A. Inverse matrices

Definition 3.1: An inverse of a square matrix A is a matrix B of the same size such that
BA “ I “ AB, where I is the identity matrix of the same size.

You can think of of this as being the equivalent of 1
a ¨ a “ 1 “ a ¨ 1

a for a real number a. However,

for matrices, 1
A does not make any sense at all, so don’t write it!.

Notice that we need the matrix to be square so that we can multiply it with its inverse both ways
round to give the same size identity matrix each time.
Also notice that the condition is symmetrical in A and B, so we also say that A and B are inverses
of each other.

Exercise 3.2: Show that A “

˜

2 ´5

´1 3

¸

and B “

˜

3 5

1 2

¸

are inverses of each other.

Examples 3.3: ˛ The inverse of an identity matrix is itself: II “ I.
˛ The inverse of a diagonal matrix with no zero entries on the diagonal is the diagonal
matrix with the reciprocal diagonal entries:

¨

˚

˚

˚

˚

˝

λ1 0 ¨ ¨ ¨ 0

0 λ2 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ λn

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

1
λ1

0 ¨ ¨ ¨ 0

0 1
λ2

¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 1
λn

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ 1

˛

‹

‹

‹

‹

‚

and the other way around. (Here λi ‰ 0.)
˛ Not all matrices have an inverse: for example, a diagonal matrix with a zero row is not
invertible: there is no way we can get 0¨something“ 1.

˛

A 2 ˆ 2 matrix A “

˜

a b

c d

¸

has inverse A´1 “ 1
ad´bc

˜

d ´b

´c a

¸

:

˜

a b

c d

¸˜

d ´b

´c a

¸

“

˜

ad ´ bc ´ab ` ab

cd ´ cd ´cb ` ad

¸

so
˜

a b

c d

¸

1

ad ´ bc

˜

d ´b

´c a

¸

“

˜

1 0

0 1

¸

,

and the same the other way around. Obviously this needs ad ´ bc ‰ 0.
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Definition 3.4: A matrix is called invertible if it has an inverse. A matrix which is not
invertible is called singular. An invertible matrix is also called non-singular.

Note that only a square matrix can be invertible: if a matrix is not square, it is definitely not
invertible, as we defined an inverse only for square matrices.

Example 3.5: A 2 ˆ 2 matrix

˜

a b

c d

¸

is invertible if and only if ad ´ bc ‰ 0.

For example,

˛

˜

1 3

2 6

¸

is not invertible: ad ´ bc “ 6 ´ 6 “ 0.

˛

˜

9 2

4 7

¸

is invertible: ad ´ bc “ 63 ´ 8 ‰ 0.

Proposition 3.6: (Uniqueness of inverses)
If a matrix has an inverse, then that inverse is unique.

Proof. Suppose a matrix A has two inverses, B and C. Then

B “ BI mult by identity matrix does not change it

“ BpACq as C is an inverse

“ pBAqC matrix mult is associative

“ IC as B is an inverse

“ C

□

Because of this result, we say the inverse of A is A´1. So

AA´1 “ I “ A´1A.

This allows us to show

Proposition 3.7: (Properties of inverse)

(i) Every invertible matrix is the inverse of its inverse:

pA´1q´1 “ A

(ii) If A is invertible, then so is AT , and

pAT q´1 “ pA´1qT .

(iii) (“Socks and shoes”) If two n ˆ n matrices A and B are both invertible, then so is
their product AB, with inverse

pABq´1 “ B´1A´1.

Proof. (i) By uniqueness of inverses and AA´1 “ I “ A´1A.
(ii) Taking transpose of these two equations gives

pAA´1qT “ IT , so pA´1qTAT “ I,

and
pA´1AqT “ IT , so AT pA´1qT “ I.

So pA´1qT satisfies the definition for the inverse of AT , so by uniqueness of inverses,
pAT q´1 “ pA´1qT .
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(iii) We check whether B´1A´1 satisfies the definition of an inverse:

pABqpB´1A´1q “ ApBB´1qA´1 “ AIA´1 “ AA´1 “ I

and pB´1A´1qpABq “ B´1pA´1AqB “ B´1IB “ B´1B “ I

So by uniqueness of inverses, pABq´1 “ B´1A´1. □

Notice that for the inverse of a product, we have to change the order, as we did when forming the
transpose of a product. You can remember it this way:
If you first put your socks on and then your shoes, then to undo it you have to take your shoes off
first, and then your socks.
Let’s also record it as

The product of invertible matrices is invertible.

Example 3.8: ˛ Inverse of inverse:

˜

1 2

1 ´1

¸´1

“ ´
1

3

˜

´1 ´2

´1 1

¸

“

˜

1
3

2
3

1
3 ´ 1

3

¸

, and

˜

1
3

2
3

1
3 ´ 1

3

¸´1

“ ´
1
1
3

˜

´ 1
3 ´ 2

3

´ 1
3

1
3

¸

“

˜

1 2

1 ´1

¸

˛ Inverse of transpose:

¨

˝

˜

1 2

1 ´1

¸T
˛

‚

´1

“

˜

1 1

2 ´1

¸´1

“

˜

1
3

1
3

2
3 ´ 1

3

¸

“

˜

1
3

2
3

1
3 ´ 1

3

¸T

˛ Inverse of product:

˜˜

1 2

1 ´1

¸˜

1 0

0 2

¸¸´1

“

˜

1 4

1 ´2

¸´1

“ ´ 1
6

˜

´2 ´4

´1 1

¸

but
˜

1 2

1 ´1

¸´1˜

1 0

0 2

¸´1

“ ´
1

3

˜

´1 ´2

´1 1

¸

1

2

˜

2 0

0 1

¸

“ ´
1

6

˜

´2 ´2

´2 1

¸

.

On the other hand
˜

1 0

0 2

¸´1˜

1 2

1 ´1

¸´1

“
1

2

˜

2 0

0 1

¸

¨

ˆ

´
1

3

˙

˜

´1 ´2

´1 1

¸

“ ´
1

6

˜

´2 ´4

´1 1

¸

.

Exercise 3.9: ˛ Use “socks and shoes” to show that if A is invertible, then for any natural
number k, Ak is invertible with pAkq´1 “ pA´1qk.

This allows us to form negative powers of an invertible matrix:

A´k “ pAkq´1 “ pA´1qk

˛ Prove that if A is invertible, then for any λ ‰ 0, so is λA, with pλAq´1 “ 1
λA

´1.

Some matrices are easily seen to be not invertible:

Proposition 3.10: If a matrix has a zero column, then it is not invertible.

Proof. Let A “

¨

˚

˝

Ò Ò Ò

a1 ¨ ¨ ¨ ak ¨ ¨ ¨ an

Ó Ó Ó

˛

‹

‚

be a square matrix with ak “ 0, a zero column.

Then for any matrix B of the same size, the product

BA “

¨

˚

˝

Ò Ò Ò

Ba1 ¨ ¨ ¨ Bak ¨ ¨ ¨ Ban

Ó Ó Ó

˛

‹

‚

“

¨

˚

˝

Ò Ò Ò

Ba1 ¨ ¨ ¨ 0 ¨ ¨ ¨ Ban

Ó Ó Ó

˛

‹

‚

also has a zero column, so it can never be the identity matrix. □
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Corollary 3.11: If a matrix has a zero row, then it is not invertible.

Proof. Say A has a zero row. Then AT has a zero column, so AT is not invertible. But if A
were invertible, then AT would be too. But as AT isn’t, A can’t be invertible either. □

Let’s think about inverses interact with the two “meanings” of matrices we have seen.

Definition 3.12: Given a function f : X ÝÑ Y , the inverse of f is
a function f´1 : Y ÝÑ X such that f´1pfpxqq “ x for all x P X and
fpf´1pyqq “ y for all y P Y . We also write this as f´1

˝f “ idX and
f˝f´1 “ idY , where idX and idY are the identity functions on X
and Y .

X
f ,2

idX �%

Y

f´1

��

idY

�%
X

f
,2 Y

You can think of the inverse function as a function that “undoes” the original function. It has to
work both ways round though.
Not every function has an inverse.

Proposition 3.13: (Inverse matrix transformation)
If A is an invertible matrix, then the matrix transformation of A´1 is
the inverse of the matrix transformation of A: T´1

A “ TA´1 .

Proof. Suppose A is an n ˆ n matrix. Then TA´1pTApvqq “ A´1Av “

Iv “ v for any v P Rn, and TApTA´1pvqq “ AA´1v “ Iv “ v for any v P Rn. □

Rn TA ,2

id �&

Rn

TA´1

��

id

�&
Rn

TA

,2 Rn

How do invertible matrices interact with linear systems?

Proposition 3.14: A linear system Ax “ b with an invertible matrix A has a unique solution.

Proof. As A is invertible, we can multiply the matrix equation Ax “ b by A´1 on the left:

Ax “ b

ô A´1Ax “ A´1b

ô x “ A´1b

So this is the unique solution. □

Notice that this implies that if A is invertible, then Ax “ b is consistent for any b.

Important!!! When you are dealing with matrix equations (including vectors), you have to specify
whether you multiply by a matrix on the left (of both sides of the equation) or on the right (of
both sides of the equation)! This is because matrix multiplication is not commutative: the order
matters.

Example 3.15: Given that A, B are invertible, and all matrices are n ˆ n matrices, resolve for
X:

ABXA´1B “ C

ô A´1ABXA´1B “ A´1C multiply by A´1 on the left

ô XA´1B “ B´1A´1C multiply by B´1 on the left

ô XA´1 “ B´1A´1CB´1 multiply by B´1 on the right

ô X “ B´1A´1CB´1A multiply by A on the right

This result tells us something about the reduced row echelon form that an invertible matrix has:
it must have n leading 1s (if A is an n ˆ n matrix), which makes it the identity matrix.
In fact, we can use this to calculate the inverse of a matrix.
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B. Inverse algorithm

We can calculate inverse matrices with the following algorithm.

The inverse algorithm applied to a square matrix A has the following steps:

˛ Write the matrix A and the identity matrix of the same size next to each other.
˛ Apply the Gauss-Jordan algorithm to A, and apply the same steps in the same order
to the identity matrix next to it.

˛ If the reduced row echelon form of A is the identity matrix, then the matrix next to
it is A´1.

We will have to prove that it really gives us the inverse, but let’s see it on some examples first.

Examples 3.16: We will calculate the inverse of A “

¨

˚

˝

1 2 3

2 5 3

1 0 8

˛

‹

‚

.

¨

˚

˝

1 2 3

2 5 3

1 0 8

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‚

II ´ 2I, III ´ I :

¨

˚

˝

1 2 3

0 1 ´3

0 ´2 5

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˚

˝

1 0 0

´2 1 0

´1 0 1

˛

‹

‚

III ` 2II :

¨

˚

˝

1 2 3

0 1 ´3

0 0 ´1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˚

˝

1 0 0

´2 1 0

´5 2 1

˛

‹

‚

p´1q ¨ III :

¨

˚

˝

1 2 3

0 1 ´3

0 0 1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˚

˝

1 0 0

´2 1 0

5 ´2 ´1

˛

‹

‚

II ` 3III, I ´ 3III :

¨

˚

˝

1 2 0

0 1 0

0 0 1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˚

˝

´14 6 3

13 ´5 ´3

5 ´2 ´1

˛

‹

‚

I ´ 2II :

¨

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˚

˝

´40 16 9

13 ´5 ´3

5 ´2 ´1

˛

‹

‚

So A´1 “

¨

˚

˝

´40 16 9

13 ´5 ´3

5 ´2 ´1

˛

‹

‚

.

We should always check our answer: it’s very easy to make small numerical mistakes, and checking
will flag this up. Multiplying AA´1 should give us I:

¨

˚

˝

1 2 3

2 5 3

1 0 8

˛

‹

‚

¨

˚

˝

´40 16 9

13 ´5 ´3

5 ´2 ´1

˛

‹

‚

“

¨

˚

˝

´40 ` 26 ` 15 16 ´ 10 ´ 6 9 ´ 6 ´ 3

´80 ` 65 ` 15 32 ´ 25 ´ 6 18 ´ 15 ´ 3

´40 ` 40 16 ´ 16 9 ´ 8

˛

‹

‚

“

¨

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‚

.

So our answer is correct.
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Exercise 3.17: Use the inverse algorithm to compute the inverse of A “

¨

˚

˝

1 6 4

2 4 0

´1 2 6

˛

‹

‚

.

We have seen from the viewpoint of linear systems that if A is invertible, doing elementary row
operations in the Gauss-Jordan algorithm gives us the identity matrix. But why is the matrix on
the right the inverse?
To prove this, we need to link the elementary row operations to elementary matrices.

Definition 3.18: There are three types of elementary matrices, corresponding to element-
ary row operations.

˛ A diagonal matrix with 1s on the diagonal except for a λ ‰ 0 in the ith row,
¨

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
0 ¨¨¨ λ ¨¨¨ 0
...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‚

,

is obtained by multiplying the ith row of the identity matrix by λ.
˛ A matrix with 1s on the diagonal and zeros everywhere else, except for the 1 in the
ith row being in column j and the 1 in the jth row being in column i,

¨

˚

˚

˚

˚

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 1 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‹

‹

‹

‹

‚

,

is obtained by swapping rows i and j of the identity matrix.
˛ A matrix with 1s on the diagonal and also a λ in position i, j,

¨

˚

˚

˚

˚

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 1 ¨¨¨ λ ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‹

‹

‹

‹

‚

,

corresponds to adding λ times row j to row i in the identity matrix.

Proposition 3.19: Multiplying a matrix on the left by an elementary matrix has the effect of
performing the corresponding elementary row operation to the matrix.

Proof. Omitted. You can just try it out for 2 ˆ 2 or 3 ˆ 3 matrices. □

Exercise 3.20: Calculate the following:

˛

˜

1 0

0 4

¸˜

2 1

9 3

¸

˛

˜

0 1

1 0

¸˜

1 2 3

4 5 6

¸

˛

¨

˚

˝

1 0 3

0 1 0

0 0 1

˛

‹

‚

¨

˚

˝

1 2 3

4 5 6

7 8 9

˛

‹

‚

Example 3.21: Let E1 “

¨

˚

˝

1 0 0

0 1 0

0 0 2

˛

‹

‚

, E2 “

¨

˚

˝

0 1 0

1 0 0

0 0 1

˛

‹

‚

, E3 “

¨

˚

˝

1 0 0

0 1 0

4 0 1

˛

‹

‚

, A “

¨

˚

˝

a b c

d e f

g h i

˛

‹

‚

.

E1, E2, E3 are elementary matrices, and
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E1A “

¨

˚

˝

a b c

d e f

2g 2h 2i

˛

‹

‚

, E2A “

¨

˚

˝

d e f

a b c

g h i

˛

‹

‚

, E3A “

¨

˚

˝

a b c

d e f

g ` 4a h ` 4b i ` 4c

˛

‹

‚

.

So when we do the elementary row operations in the inverse algorithm, we are multiplying A and
I successively with more and more elementary matrices on the left.

A | I

E1A | E1I

E2E1A | E2E1I

... |
...

Ek ¨ ¨ ¨E2E1A | Ek ¨ ¨ ¨E2E1I

When we are finished, we have pEk ¨ ¨ ¨E2E1qA “ I on the left of the line, so the product
Ek ¨ ¨ ¨E2E1 “ B is a very good candidate for A´1. And we have this same matrix on the right of
the line: Ek ¨ ¨ ¨E2E1I “ B.
To prove that this product of elementary matrices really is the inverse of A, we need either some
way of checking the product the other way round: is AB also “ I? Or we need to argue in some
other way that we can be sure that B is the inverse of A. We can do this by proving that

Lemma 3.22: All elementary matrices are invertible.

Proof. The inverse of an elementary matrix is the matrix corresponding to the inverse ele-
mentary row operation:

¨

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
0 ¨¨¨ λ ¨¨¨ 0
...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‚

´1

“

¨

˚

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
0 ¨¨¨ 1

λ ¨¨¨ 0

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‹

‚

divide row i by λ pλ ‰ 0q

¨

˚

˚

˚

˚

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 1 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‹

‹

‹

‹

‚

´1

“

¨

˚

˚

˚

˚

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 1 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‹

‹

‹

‹

‚

self-inverse: swap rows again

¨

˚

˚

˚

˚

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 1 ¨¨¨ λ ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‹

‹

‹

‹

‚

´1

“

¨

˚

˚

˚

˚

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 1 ¨¨¨ ´λ ¨¨¨ 0

...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‹

‹

‹

‹

‚

subtract λ times row j from row i

□

So we can show

Proposition 3.23: (Inverse algorithm works)
The inverse algorithm really does produce the inverse of a matrix A, provided that the reduced
row echelon form of A is I.
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Proof. The inverse algorithm

A | I

E1A | E1I

E2E1A | E2E1I

... |
...

Ek ¨ ¨ ¨E2E1A | Ek ¨ ¨ ¨E2E1I

produces a matrix B “ Ek ¨ ¨ ¨E2E1 with BA “ I. Because every elementary matrix is invertible
(Lemma 3.22) and the product of invertible matrices is invertible (Prop. 3.7, “socks and shoes”),
the matrix B is invertible with B´1 “ E´1

1 E´1
2 ¨ ¨ ¨E´1

k , and so

BA “ I

ñ B´1BA “ B´1I

ñ A “ B´1

ñ A´1 “ B as B is the inverse of its inverse.

So indeed A´1 “ Ek ¨ ¨ ¨E2E1, which is the matrix we obtain on the right hand side of the line at
the end of the algorithm. □

We now have several conditions that tell us whether A is invertible.

Theorem 3.24: (Invertibility conditions)
For a square matrix A, the following are equivalent:

(i) A is invertible.
(ii) Ax “ 0 has only the trivial solution x “ 0.
(iii) The reduced row echelon form of A is the identity I.
(iv) A is the product of elementary matrices.

Proof. We will prove the implications in a circle: iñiiñiii ñivñi. Then we automatically
also get the other implications such as ivñiii and iiiñi, by going two or three steps in the circle.

˛ i ñii: We proved this already (Prop. 3.14): if A is invertible, then

Ax “ 0 ñ A´1Ax “ A´10 ñ x “ 0,

because any matrix times the zero vector gives the zero vector.
˛ ii ñiii: If Ax “ 0 has only the trivial solution, then the proof of Prop. 2.28 (solutions
of homogeneous system) shows that the reduced row echelon form of A has n leading 1s,
where n is the number of variables. As A is a square matrix, this means the reduced row
echelon form of A is In.

˛ iii ñiv: The Gauss-Jordan algorithm (or the inverse algorithm) produces Ek ¨ ¨ ¨E2E1A
as the reduced row echelon form of A. If this is I, then Ek ¨ ¨ ¨E2E1A “ I, and so
A “ E´1

1 E´1
2 ¨ ¨ ¨E´1

k , as all elementary matrices are invertible (Lemma 3.22). The
inverse of an elementary matrix is also an elementary matrix, so A is the product of
elementary matrices.

˛ ivñi: If A is the product of elementary matrices, then it is invertible: the product of
invertible matrices is invertible (Prop. 3.7, “socks and shoes”). □

Exercise 3.25: Is A “

¨

˚

˝

1 6 4

2 4 ´1

´1 2 5

˛

‹

‚

invertible? Calculate it’s reduced row echelon form to

check this.

The second statement, that Ax “ 0 only has the trivial solution, can also be interpreted in terms of
the matrix transformation TA : Rn ÝÑ Rn: it tells us that only the zero vector x “ 0 gets mapped
to 0. If you had two different vectors, v ‰ w with Av “ 0 “ Aw, then there is no way to “undo”
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multiplication by A: if we tried to do A´10, we would need to get v and w, which is not possible!
We will look more at this viewpoint in the second semester.

However, we can already use this theorem to show that actually, for a square matrix to be invertible,
we only have to check one way round if BA “ In: this will automatically give us AB “ In as well.

Proposition 3.26: (Check one get one free for invertible matrices)
If A and B are n ˆ n matrices with BA “ In, then A is invertible with A´1 “ B.

Proof. Suppose Av “ 0 for some v P Rn. We want to show that then v “ 0, so that A
satisfies one of the invertibility conditions (Theorem 3.24).
We have BpAvq “ B0 “ 0, but also pBAqv “ Inv “ v, so that v “ 0. So Ax “ 0 has only the
trivial solution x “ 0, so A is invertible.
Since A´1 exists, multiplying BA “ In by A´1 on the right gives B “ A´1. □

Corollary 3.27: If A and B are n ˆ n matrices with AB “ In, then A is invertible with
A´1 “ B.

Proof. By “check one get on free for invertible matrices”, we get that B is invertible with
B´1 “ A. But then of course also A is invertible with A´1 “ B, see Prop. 3.7. □

So it doesn’t matter which way round we check the multiplication in this case.

This result also gives us a partial converse to the result “a product of invertible matrices is invert-
ible”:

Proposition 3.28: (Invertible product)
If the product AB of two n ˆ n matrices A and B is invertible, then both A and B are also
invertible.

Proof. Let C “ pABq´1. Then we have CpABq “ In “ pABqC. If we set D “ BC, then
AD “ In, so by “check one get one free for invertible matrices” (Prop. 3.26), A is invertible with
inverse D.
Similarly, setting E “ CA gives EB “ In, so B is invertible by “check one get one free”. □

Corollary 3.29: For n ˆ n matrices A and B, we have

AB is invertible ðñ A and B are invertible.

Let’s also record all implications an invertible matrix has on a linear system.

Theorem 3.30: (Invertible linear system)
Given a square matrix A, the following are equivalent:

(i) A is invertible.
(ii) The homogeneous linear system Ax “ 0 has only the trivial solution x “ 0.
(iii) The inhomogeneous linear system Ax “ b is consistent for any b P Rn.
(iv) The inhomogeneous linear system Ax “ b has exactly one solution for any b P Rn.

Proof. We have already proved i ôii. We will now prove i ñiv ñiii ñi.

˛ i ñiv: This is Proposition 3.14:

Ax “ b ñ A´1Ax “ A´1b

giving the unique solution x “ A´1b.
˛ iv ñiii: If the system Ax “ b has a unique solution, then it has some solution, so it is
consistent.
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˛ iiiñi: We will construct an inverse for A from solutions to several different inhomogeneous
systems Ax “ b.

Let e1 “

¨

˝

1
0
0
...
0

˛

‚, e2 “

¨

˝

0
1
0
...
0

˛

‚, . . ., en “

¨

˝

0
0
...
0
1

˛

‚. Then we can find solutions x1, x2, . . . , xn

to the linear systems Ax “ e1, Ax “ e2, . . ., Ax “ en. Let B “

¨

˚

˝

Ò Ò Ò

x1 ¨ ¨ ¨ xk ¨ ¨ ¨ xn

Ó Ó Ó

˛

‹

‚

be the matrix with these solutions as columns. Then

AB “

¨

˚

˝

Ò Ò Ò

Ax1 ¨ ¨ ¨ Axk ¨ ¨ ¨ Axn

Ó Ó Ó

˛

‹

‚

“

¨

˚

˝

Ò Ò Ò

e1 ¨ ¨ ¨ ek ¨ ¨ ¨ en

Ó Ó Ó

˛

‹

‚

“ In.

So by “check one get one free for invertible matrices” (Prop. 3.26), A is invertible. □

C. Inverse matrices: Study guide

Concept review.

˛ Inverse of a matrix.
˛ Invertible, non-singular, singular matrices.
˛ Inverse of a 2 ˆ 2 matrix.
˛ Uniqueness of inverse.
˛ Inverse of inverse, inverse of transpose, inverse of product.
˛ Negative integer powers of an invertible matrix.
˛ Inverse matrix transformation.
˛ Linear system with invertible matrix.
˛ Inverse algorithm.
˛ Elementary matrices.
˛ Invertibility conditions: equivalent conditions for a matrix to be invertible.
˛ Check one get one free for inverse matrices.

Skills.

˛ Find the inverse of a 2 ˆ 2 matrix.
˛ Use the definition of an inverse (and uniqueness of inverses) to prove properties of inverses.
˛ Determine elementary matrices corresponding to a given elementary row operation.
˛ Use the inverse algorithm to determine whether a matrix is invertible, and to calculate
it’s inverse.

˛ Solve a linear system using inverse matrices.

D. Determinant of a 2 ˆ 2 matrix

When introducing inverses, we saw that a 2ˆ2 matrix

˜

a b

c d

¸

is invertible if and only if ad´bc ‰ 0.

This is a useful quantity, which also comes back in the formula for the inverse of a 2 ˆ 2 matrix.

Definition 3.31: The determinant of a 2 ˆ 2 matrix A “

˜

a b

c d

¸

is detA “ ad ´ bc.

Examples 3.32: ˛ det

˜

1 4

8 3

¸

“ 3 ´ 32 “ ´29 ˛ det

˜

7 0

0 3

¸

“ 21 ˛ det

˜

a b

2a 2b

¸

“

2ab ´ 2ab “ 0
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This determinant has a geometric significance:

Fact 3.33: Consider the square with corners

˜

0

0

¸

,

˜

1

0

¸

,

˜

1

1

¸

,

˜

0

1

¸

. This has area 1. If we

transform this square using the matrix transformation TA, then the resulting quadrilateral has area
detA. Here a negative determinant signifies that the orientation of the corners round the square
has been reversed.

Examples 3.34:

A “

˜

cospθq ´ sinpθq

sinpθq cospθq

¸

has detA “ cos2pθq ` sin2pθq “ 1.

The vectors
˜

0

0

¸

,

˜

1

0

¸

,

˜

1

1

¸

,

˜

0

1

¸

get mapped to
˜

0

0

¸

,

˜

cospθq

sinpθq

¸

,

˜

cospθq ´ sinpθq

sinpθq ` cospθq

¸

,

˜

´ sinpθq

cospθq

¸

.

This represents the same square rotated by θ.

You can change the angle and see what happens in GeoGebra:
https://www.geogebra.org/graphing/yt8v8cdq

A “

˜

3 0

0 4

¸

has detA “ 12. This map scales everything

in the x-direction by 3 and everything in the y-direction by
4, so the unit square gets mapped to

˜

0

0

¸

,

˜

3

0

¸

,

˜

3

4

¸

,

˜

0

4

¸

so we get a rectangle with area 12.

A “

˜

3 0

0 ´2

¸

has negative determinant detA “ ´6. This

corresponds to the orientation of the square being reversed.

A “

˜

1 2

0 1

¸

is a shear: detA “ 1, the area stays the

same, the square just gets transformed into a parallelogram.
You can imagine the square being made up out of lots of
horizontal sheets of paper, and then you gently push the
stack so that they slip sideways.

So we have already seen that

Proposition 3.35: A 2 ˆ 2 matrix A is invertible if and only if detA ‰ 0.
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Proof. Let A “

˜

a b

c d

¸

. If detA “ ad ´ bc ‰ 0, then

1

detA

˜

d ´b

´c a

¸˜

a b

c d

¸

“
1

detA

˜

da ´ bc db ´ bd

´ca ` ac ´cb ` ad

¸

“

˜

1 0

0 1

¸

.

So A has an inverse.
Conversely, if detA “ ad ´ bc “ 0, then ad “ bc, so

˛ either A has a zero row or zero column, and so it is not invertible (Prop. 3.10 and
Corollary 3.11),

˛ or d
b “ c

a , so multiplying the first row by this number gives the second row. This means
that the row echelon form has a zero row, so the matrix is not invertible. □

This determinant satisfies the following properties:

Formula 3.36: (Properties of 2 ˆ 2 determinants)

(1) det

˜

ra b

rc d

¸

“ rad ´ rcb “ r det

˜

a b

c d

¸

,

(2) det

˜

a ` x b

c ` z d

¸

“ pa`xqd´bpc`zq “ ad´bc`xd´bz “ det

˜

a b

c d

¸

`det

˜

x b

z d

¸

(3) det

˜

b a

d c

¸

“ bc ´ ad “ ´pad ´ bcq “ ´det

˜

a b

c d

¸

.

(4) det

˜

1 0

0 1

¸

“ 1.

Our aim now is to define the determinant of arbitrary n ˆ n matrices such that A is invertible if
and only if the determinant is non–zero. We want this determinant of an nˆn matrix to have the
same properties as we’ve just written down for the 2 ˆ 2 determinant.

E. Determinants by cofactor expansion

Definition 3.37: (Cofactor expansion across first row) Let A “ paijq be a nˆn–matrix,
n ě 2. The determinant of A is defined by

detA “

n
ÿ

j“1

a1jp´1q1`j detp pA1jq,

where pAij is the matrix one gets by deleting the i–th row and the j–th column of A.

The determinant of the matrix pAij is called the minor of entry aij and p´1qi`j detp pAijq is
called the cofactor of entry aij .

The hat is often used when we leave out something, so in pAij we leave out row i and column j.
Note that we introduce the determinant inductively: the determinant of a 3ˆ3 matrix is by defini-
tion given by a linear combination of determinants of 2ˆ2 matrices, which we have already defined.
Similarly, the determinant of an n ˆ n matrix can be computed if one knows the determinant of
n ´ 1 ˆ n ´ 1 matrices.
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Notation 3.38: When we write out a matrix with it’s entries, we often use vertical lines to denote
determinant:

det

˜

a b

c d

¸

“

∣∣∣∣∣a b

c d

∣∣∣∣∣
det

¨

˚

˝

a b c

d e f

g h i

˛

‹

‚

“

∣∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣∣
det

¨

˚

˚

˝

a11 ¨ ¨ ¨ a1n
...

. . .
...

an1 ¨ ¨ ¨ ann

˛

‹

‹

‚

“

∣∣∣∣∣∣∣∣
a11 ¨ ¨ ¨ a1n
...

. . .
...

an1 ¨ ¨ ¨ ann

∣∣∣∣∣∣∣∣
We don’t use this notation when giving the matrix a name! So we write detA not |A|.

Example 3.39: In the 3 ˆ 3 case, we get∣∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣∣ “ a ¨

∣∣∣∣∣e f

h i

∣∣∣∣∣ ´ b ¨

∣∣∣∣∣d f

g i

∣∣∣∣∣ ` c ¨

∣∣∣∣∣d e

g h

∣∣∣∣∣
Example 3.40: We will look at two 3 ˆ 3 examples.

a) Let A “

¨

˚

˝

1 5 0

2 4 ´1

0 ´2 0

˛

‹

‚

. Then

pA11 “

˜

4 ´1

´2 0

¸

, pA12 “

˜

2 ´1

0 0

¸

, pA13 “

˜

2 4

0 ´2

¸

,

and

detA “

3
ÿ

j“1

p´1q1`ja1j det pA1j

“ p´1q1`1

l jh n

“1

a11
ljhn

“1

det pA11 ` p´1q1`2

l jh n

“´1

a12
ljhn

“5

det pA12 ` p´1q1`3

l jh n

“1

a13
ljhn

“0

det pA13

“ 1 ¨ 1 ¨

∣∣∣∣∣ 4 ´1

´2 0

∣∣∣∣∣ ` p´1q ¨ 5 ¨

∣∣∣∣∣2 ´1

0 0

∣∣∣∣∣ ` 1 ¨ 0 ¨

∣∣∣∣∣2 4

0 ´2

∣∣∣∣∣
“ ´2 ´ 5 ¨ 0 ` 0 “ ´2.

b) The determinant of

A “

¨

˚

˝

3 1 0

´2 ´4 3

5 4 ´2

˛

‹

‚

by definition is

detA “ 3 ¨

∣∣∣∣∣´4 3

4 ´2

∣∣∣∣∣ ´ 1 ¨

∣∣∣∣∣´2 3

5 ´2

∣∣∣∣∣ ` 0 ¨

∣∣∣∣∣´2 ´4

5 4

∣∣∣∣∣ “ ´1 .

The term determinant was first introduced by the German mathematician Carl Friedrich
Gauss in 1801 (see Section 2.1 in the WileyPLUS book), who used them to “determine”
properties of certain kinds of functions. The term minor is apparently due to the English
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mathematician James Sylvester (see Section 2.1 in the WileyPLUS book), who wrote the
following in a paper published in 1850: “Now conceive any one line and any one column be
struck out, we get... a square, one term less in breadth and depth than the original square; and
by varying in every possible selection of the line and column excluded, we obtain, supposing
the original square to consist of n lines and n columns, n2 such minor squares, each of which
will represent what I term a ‘First Minor Determinant’ relative to the principal or complete
determinant.”
Cofactor expansion is not the only method for expressing the determinant of a matrix in
terms of determinants of lower order. For example, although it is not well known, the English
mathematician Charles Dodgson, who was the author of Alice’s Adventures in Wonderland
and Through the Looking Glass under the pen name of Lewis Carroll, invented such a method,
called “condensation.” That method has recently been resurrected from obscurity because of
its suitability for parallel processing on computers.

Instead of expanding along the first row, we can also expand along any other row, or even along
any column.

Proposition 3.41: (General cofactor expansions)
Let A “ paijq be a n ˆ n–matrix, n ě 2. Then

detA “

n
ÿ

j“1

p´1qi`jaij detp pAijq for any i (expand in row i)

“

n
ÿ

i“1

p´1qi`jaij detp pAijq for any j (expand in column j)

Proof. Omited here. The fact is that these are all equal to a formula which gives a big
alternating sum of products of entries of A, which involves some concepts we cannot cover in this
course. □

Slogan: The determinant of A is formed by taking all possible products of entries with exactly one
from each row and each column, and adding them all together with plus or minus.

Example 3.42: Compute the cofactor expansion of A “

¨

˚

˝

1 5 0

2 4 ´1

0 ´2 0

˛

‹

‚

across the 3rd column:

detA “ p´1q1`3 ¨ 0 ¨

∣∣∣∣∣2 4

0 ´2

∣∣∣∣∣ ` p´1q2`3 ¨ p´1q ¨

∣∣∣∣∣1 5

0 ´2

∣∣∣∣∣ ` p´1q3`3 ¨ 0 ¨

∣∣∣∣∣1 5

2 4

∣∣∣∣∣
“ ´2.

So we see this can be very useful: we can make our work easier by picking rows or columns which
have a lot of zeros in them.

Proposition 3.43: If A contains a zero row or a zero column then detA “ 0.

Proof. Expand across the zero row or the zero column. □

As another useful consequence of the expansion across rows we get an easy formula to compute
determinants of 3 ˆ 3–matrices:
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Formula 3.44: (Garden fence rule for 3 ˆ 3 matrices)

det

¨

˚

˝

a11 a12 a13

a21 a22 a23

a31 a32 a33

˛

‹

‚

“ a11a22a33 `a12a23a31 `a13a21a32 ´a31a22a13 ´a32a23a11 ´a33a21a12

Exercise 3.45: Verify this formula by expanding along the first row.

Figure 1. “garden fence” rule for 2 ˆ 2 and 3 ˆ 3 determinants,

Be aware that these simple methods only work for 2ˆ 2 and 3ˆ 3 matrices. For matrices of larger
size there is no simple rule.

You can see here also the idea of “take one entry from each row and each column, take their
product, and then add it all up, some with plus and some with minus”. It just happens that for
bigger matrices, that idea doesn’t come out in as nice a pattern as this garden fence rule.

F. Properties of determinant

Because we can expand along rows or columns, transposing a matrix does not change the determ-
inant:

Proposition 3.46: (Determinant of transpose)
Let A P Mn,n. Then

detAT “ detA

Proof. Since we can calculate the determinant by expanding in a row or a column, we get
the same answer if we expand detAT in row 1 and detA in column 1, say. □

We can now show that the properties we calculated for 2 ˆ 2 determinants also hold for a determ-
inant of a n ˆ n matrix:

Proposition 3.47: (Properties of determinant)
Let a1, . . . , an and bk be columns of nˆn matrices (i.e. vectors in Rn), and a1

1, . . . , a
1
n and b1

k

rows of n ˆ n matrices. Then

(i) “scalar multiple comes out of a column or a row”:

det

ˆ

Ò Ò Ò

a1 ¨¨¨ λak ¨¨¨ an

Ó Ó Ó

˙

“ λ det
´

Ò Ò Ò
a1 ¨¨¨ ak ¨¨¨ an

Ó Ó Ó

¯

and

det

¨

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð λa1

k Ñ

...
Ð a1

n Ñ

˛

‹

‹

‹

‹

‚

“ λ det

¨

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð a1

k Ñ

...
Ð a1

n Ñ

˛

‹

‹

‹

‹

‚

(ii) determinant is linear in columns and rows:

det

ˆ

Ò Ò Ò

a1 ¨¨¨ ak`bk ¨¨¨ an

Ó Ó Ó

˙

“ det
´

Ò Ò Ò
a1 ¨¨¨ ak ¨¨¨ an

Ó Ó Ó

¯

` det

ˆ

Ò Ò Ò

a1 ¨¨¨ bk ¨¨¨ an

Ó Ó Ó

˙

and
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det

¨

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð a1

k`b1
k Ñ

...
Ð a1

n Ñ

˛

‹

‹

‹

‹

‚

“ det

¨

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð a1

k Ñ

...
Ð a1

n Ñ

˛

‹

‹

‹

‹

‚

` det

¨

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð b1

k Ñ

...
Ð a1

n Ñ

˛

‹

‹

‹

‹

‚

(iii) swapping columns or rows introduces a minus sign:

det
´

Ò Ò Ò Ò
a1 ¨¨¨ ak ¨¨¨ al ¨¨¨ an

Ó Ó Ó Ó

¯

“ ´det
´

Ò Ò Ò Ò
a1 ¨¨¨ al ¨¨¨ ak ¨¨¨ an

Ó Ó Ó Ó

¯

and

det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð a1

k Ñ

...
Ð a1

l Ñ

...
Ð a1

n Ñ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ´det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð a1

l Ñ

...
Ð a1

k Ñ

...
Ð a1

n Ñ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(iv) a matrix with two columns or rows the same has determinant 0:

det
´

Ò Ò Ò Ò
a1 ¨¨¨ ak ¨¨¨ ak ¨¨¨ an

Ó Ó Ó Ó

¯

“ 0 and det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð a1

k Ñ

...
Ð a1

k Ñ

...
Ð a1

n Ñ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 0

(v) adding multiple of another column or row to a given column or row doesn’t change the
determinant:

det

ˆ

Ò Ò Ò Ò

a1 ¨¨¨ ak`λal ¨¨¨ al ¨¨¨ an

Ó Ó Ó Ó

˙

“ det
´

Ò Ò Ò Ò
a1 ¨¨¨ ak ¨¨¨ al ¨¨¨ an

Ó Ó Ó Ó

¯

and

det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð a1

k`λa1
l Ñ

...
Ð a1

l Ñ

...
Ð a1

n Ñ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ð a1
1 Ñ

...
Ð a1

k Ñ

...
Ð a1

l Ñ

...
Ø a1

n Ñ

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(vi) det In “ 1.

Proof. (i) You can do this by induction, or by choosing the right column/row to expand
in.

Let A “

´

Ò Ò Ò
a1 ¨¨¨ ak ¨¨¨ an

Ó Ó Ó

¯

and B “

ˆ

Ò Ò Ò

a1 ¨¨¨ λak ¨¨¨ an

Ó Ó Ó

˙

, i.e. bik “ λaik for i “ 1, . . . , n.

Then we expand in column k:

detB “

n
ÿ

i“1

p´1qk`ibik detp pBikq

“

n
ÿ

j“1

p´1qk`iλaik detp pAikq

“ λ detA.

For rows, this follows by detAT “ detA, Proposition 3.46. (Or we expand in the row
instead.)

(ii) Exercise. Expand in row/column k.
(iii) (Stretch yourself Exercise). Can prove by induction and expanding in a row/column that is

not one of the two we’ve swapped.
(iv) Follows from (iii): if two columns are the same, swapping them introduces a minus sign but

also keeps the matrix the same.
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(v) Combine (i), (ii) and (iv).
(vi) We compute the determinant of the identity matrix In “ paijq as

det In “ p´1q1`1 a11
ljhn

“1

det In´1 `

n
ÿ

j“2

p´1q1`j a1j
ljhn

“0

p pInq1j

“ 1 ¨ det In´1 “ . . . “ det I2 “ 1. □

The previous result shows how in some circumstances we can decompose a determinant into a sum
of two determinants.
However, in general, the determinant of a sum of square matrices is not the sum of the determinants:

A “

˜

1 2

0 1

¸

, B “

˜

´1 ´2

2 ´1

¸

have determinants detA “ 1,detB “ 5 so that detA ` detB “ 6 but

A ` B “

˜

0 0

2 0

¸

has determinant detpA ` Bq “ 0 “ 6.

Remark 3.48: In fact, the determinant is uniquely determined by the following properties:
A map det : Mn,n ÝÑ R sending A ÞÝÑ detA is called determinant if the following holds:

(1) det is linear in each column. That is, if ai are columns:
(i) detpa1, . . . , ak´1, ak ` bk, ak`1, . . . , anq “

detpa1, . . . , ak´1, ak, ak`1, . . . , anq ` detpa1, . . . , ak´1, bk, ak`1, . . . , anq

(ii) detpa1, . . . , ak´1, rak, ak`1, . . . , anq “ r detpa1, . . . , ak´1, ak, . . . , anq

(2) det is alternating: swapping two columns introduces a minus sign:

detpa1, . . . , ak´1, ak, ak`1, . . . , al´1, al, al`1, . . . , anq “

´detpa1, . . . , ak´1, al, ak`1, . . . , al´1, ak, al`1, . . . , anq

(3) det In “ 1.

Proposition 3.49: (Determinant of upper triangular)
If A is upper triangular, i.e, if

A “

¨

˚

˚

˚

˚

˚

˝

a11 ˚ . . . ˚

0
. . .

...
...

. . . ˚

0 . . . 0 ann

˛

‹

‹

‹

‹

‹

‚

then
detA “ a11a22 . . . ann.

A similar statement holds for lower triangular matrices.

Proof. Expand across the first column:

detA “ a11 det

¨

˚

˝

a22 ˚ ... ˚

0
. . .

...
...

. . . ˚
0 ... 0 ann

˛

‹

‚

“ . . . “ a11a22 . . . ann.

□

In general, expansion across rows or columns is not a useful tool to calculate a determinant. Apply
this method only in the case that the matrix contains rows/columns with lots of zeros.
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G. Evaluating determinants by row reduction

In this section we will show how to evaluate a determinant by reducing the associated matrix to
row echelon form. In general, this method requires less computation than cofactor expansion and
hence is the method of choice for large matrices, .

Proposition 3.50: (Determinants of elementary matrices)
Let E P Mn,n be an elementary matrix. Then

(i) If E results from multiplying a row of In by a non-zero scalar λ, then detpEq “ λ.
(ii) If E results from interchanging two rows of In, then detE “ ´1.
(iii) If E results from adding a multiple of one row of In to another, then detE “ 1.

Proof. This follows immediately from Proposition 3.47. □

So, more visually:

det

¨

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
0 ¨¨¨ λ ¨¨¨ 0
...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‚

“ λ det

¨

˚

˚

˚

˚

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 1 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‹

‹

‹

‹

‚

“ ´1 det

¨

˚

˚

˚

˚

˚

˚

˝

1 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 1 ¨¨¨ λ ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 1 ¨¨¨ 0
...
. . .

...
. . .

...
. . .

...
0 ¨¨¨ 0 ¨¨¨ 0 ¨¨¨ 1

˛

‹

‹

‹

‹

‹

‹

‚

“ 1

In particular, all elementary matrices have non-zero determinant.
Using this, we can rewrite some parts of Proposition 3.47 in terms of elementary matrices:

Proposition 3.51: (Determinant preserves product with elementary matrices.)
Let E be an elementary matrix, and A an n ˆ n matrix.

(i) If E multiplies a row with λ P R then

λ detA “ detpEAq “ detE detA.

(ii) If E interchanges rows then

´detA “ detpEAq “ detE detA.

(iii) If E adds a multiple of one row to another row then

detA “ detpEAq “ detE detA.

Proof. Recall from Prop. 3.19 that calculating EA has the effect of applying the element-
ary row operation corresponding to E to the matrix A. So this follows from the properties of
determinant given in Proposition 3.47. □

Thus: if we only apply elementary row operations then we have control over the determinant!
Therefore, we can use row reduction to compute the determinant of a matrix.

Example 3.52: ∣∣∣∣∣∣∣
1 2 3

0 2 4

0 0 3

∣∣∣∣∣∣∣
l jh n

“6

II`2I
“

∣∣∣∣∣∣∣
1 2 3

2 6 10

0 0 3

∣∣∣∣∣∣∣ “ 3

∣∣∣∣∣1 2

2 6

∣∣∣∣∣ “ 6
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1 2 3

0 2 4

0 0 3

∣∣∣∣∣∣∣
II{2
“ 2

∣∣∣∣∣∣∣
1 2 3

0 1 2

0 0 3

∣∣∣∣∣∣∣ “ 2 ¨ 3 Take the factor 2 out of second row

∣∣∣∣∣∣∣
1 2 3

0 2 4

0 0 3

∣∣∣∣∣∣∣ IØIII
“ p´1q

∣∣∣∣∣∣∣
0 0 3

0 2 4

1 2 3

∣∣∣∣∣∣∣ “ p´1q ¨ 3

∣∣∣∣∣0 2

1 2

∣∣∣∣∣ “ 6

Even with today’s fastest computers it would take millions of years to calculate a determinant of
matrix of size 25 ˆ 25, unless it is very sparsely filled. Methods based on row reduction are often
used for large determinants.

Example 3.53: To evaluate detA where

A “

¨

˚

˝

0 1 5

3 ´6 9

2 6 1

˛

‹

‚

,

we use row reduction:

detA
IØII
“ ´

∣∣∣∣∣∣∣
3 ´6 9

0 1 5

2 6 1

∣∣∣∣∣∣∣
I{3
“ ´3

∣∣∣∣∣∣∣
1 ´2 3

0 1 5

2 6 1

∣∣∣∣∣∣∣
III´2I

“ ´3

∣∣∣∣∣∣∣
1 ´2 3

0 1 5

0 10 ´5

∣∣∣∣∣∣∣ III´10II
“ ´3

∣∣∣∣∣∣∣
1 ´2 3

0 1 5

0 0 ´55

∣∣∣∣∣∣∣ “ p´3qp´55q “ 165

where we used that the determinant of an upper triangular matrix is given as the product of the
diagonal entries.

H. Determinant of a matrix product

Considering the complexity of the formulas for determinants and matrix multiplication, it would
seem unlikely that a simple relationship should exist between them. This is what makes the
simplicity of our next result so surprising. We will show that if A and B are square matrices of
the same size, then detpABq “ detA detB.
We already know from Proposition 3.51 that the product is preserved if one of the matrices is an
elementary matrix:

If E,B P Mn,n and E is an elementary matrix, then

detpEBq “ detE detB.

So applying that several times we get:

Corollary 3.54: If B P Mn,n and E1, . . . , Er P Mn,n are elementary matrices, then

detpE1E2 . . . ErBq “ detpE1q . . . detpErqdetpBq.

In particular,

Theorem 3.55: A square matrix A is invertible if and only if detA “ 0.

Proof. Let R be the reduced row echelon form of A and E1, . . . , Er the elementary matrices
which give R “ E1 . . . ErA. By the previous theorem we have

detpRq “ detpE1q . . . detpErqdetpAq .
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Since elementary matrices have non-zero determinant we see that detR “ 0 if and only if detA “ 0.
Now, if A is invertible then R “ In and detA “ 0 since det In “ 1 “ 0.
Conversely, if detA “ 0 then detR “ 0 which tells us that R cannot have a row of zeros. Thus,
R “ In and hence A is invertible. □

So we can add this to our list of equivalent invertibility conditions:

Theorem 3.56: (Invertibility conditions)
For a square matrix A, the following are equivalent:

(i) A is invertible.
(ii) Ax “ 0 has only the trivial solution x “ 0.
(iii) The reduced row echelon form of A is the identity I.
(iv) A is the product of elementary matrices.
(v) detA ‰ 0.

We are now ready for the main result concerning products of matrices.

Theorem 3.57: If A,B P Mn,n then

detpABq “ detpAqdetpBq .

Proof. We divide the proof into two cases that depend whether or not A is invertible.
If A is singular then by Corollary 3.29 we see that AB is singular: if AB were invertible, then A
would also be invertible. Thus by the previous theorem detpAq “ detpABq “ 0 which shows the
statement in this case.
If A is invertible, then A is the product of elementary matrices E1, . . . , Er. Thus

detpABq “ detpE1 . . . ErBq “ detpE1q . . . detpErqdetpBq “ detpAqdetpBq. □

In 1815 the great French mathematician Augustin Cauchy published a landmark paper in
which he gave the first systematic and modern treatment of determinants. It was in that
paper that Theorem 3.57 was stated and proved in full generality for the first time. Special
cases of the theorem had been stated and proved earlier, but it was Cauchy who made the
final jump.

Example 3.58: Given

A “

˜

3 1

2 1

¸

, B “

˜

´1 3

5 8

¸

and AB “

˜

2 3

17 14

¸

,

we have

detA “ 3 ´ 2 “ 1,

detB “ ´8 ´ 15 “ ´23,

detpABq “ 28 ´ 51 “ ´23 “ detA ¨ detB.

Proposition 3.59: If A is invertible, then

detpA´1q “
1

detA

Proof. Since A´1A “ In we have

detpA´1qdetpAq “ detpInq “ 1

which shows the result. □
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I. Determinants: Study guide

Concept review.

˛ Determinant
˛ Minor
˛ Cofactor
˛ Cofactor expansion
˛ Properties of determinant
˛ The effect of elementary row operations on the value of a determinant.
˛ The determinants of the three types of elementary matrices.
˛ Determinant test for invertibility.
˛ Determinant of product.
˛ Determinant of inverse.

Skills.

˛ Use cofactor expansion to evaluate the determinant of a square matrix.
˛ Use the garden fence rule to evaluate the determinant of a 2 ˆ 2 or 3 ˆ 3 matrix.

˛ Find the determinant of a matrix which contains a zero row or column.
˛ Find the determinant of an upper triangular, lower triangular, diagonal matrix by inspec-
tion.

˛ Find the determinant of a transpose matrix.
˛ Use row reduction to evaluate the determinant of a matrix.
˛ Combine the use of row reduction and cofactor expansion to evaluate the determinant of
a matrix.

˛ Use the determinant to test a matrix for invertibility.
˛ Compute the determinant of products.
˛ Compute the determinant of an inverse.
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Vector Spaces

A. Vector space axioms and examples

Recall from Chapter 1 that the set Rn of all vectors with n real entries satisfies certain conditions
that make it a vector space. We will now look at these conditions again and see more examples of
such real vector spaces.

Definition 4.1: A real vector space is a set V equipped with addition and scalar multi-
plication by real numbers, satisfying the following axioms: for any u, v, w P V and λ, µ P R,

VA0 u ` v P V (closure under addition)
VA1 There exists a zero vector 0 P V which satisfies v ` 0 “ v “ 0 ` v. (zero vector)
VA2 There are negative vectors satisfying v ` p´vq “ 0 “ p´vq ` v. (negative vectors)
VA3 pu ` vq ` w “ u ` pv ` wq (associativity of addition)
VA4 u ` v “ v ` u (commutativity of addition)
SM0 λv P V (closure under scalar multiplication)
SM1 1 ¨ v “ v (unit scalar)
SM2 λ ¨ pµvq “ pλ ¨ µqv (associativity of scalar mult)
SM3 pλ ` µq v “ λv ` µv (distributivity of scalar mult over real addition)
SM4 λpu ` vq “ λu ` λv (distribuitivity of scalar mult over vector addition)

A vector is defined to be an element of a vector space.

Examples 4.2: ˛ We have seen that for any natural number n, Rn is a vector space, where
vector addition and scalar multiplication is defined entry-wise.

˛ We have seen that the set of mˆ n matrices Mm,n is a vector space, where addition and
scalar multiplication is also defined entry-wise.

˛ Consider the set Pn of real polynomials of degree less than or equal to n. So a general
such polynomial is a0 `a1x`a2x

2 `a3x
3 `¨ ¨ ¨`anx

n, with real coefficients ai P R. (Note
that the coefficients are allowed to be 0, so this includes polynomials of smaller degree.)

Given two such polynomials p “ a0 ` a1x` ¨ ¨ ¨ ` anx
n and q “ b0 ` b1x` ¨ ¨ ¨ ` bnx

n,
we can add them:

p ` q “ pa0 ` b0q ` pa1 ` b1qx ` ¨ ¨ ¨ ` pan ` bnqxn

which is another polynomial of degree at most n. So VA0 is satisfied: p ` q P Pn.
The zero polynomial 0 “ 0 ` 0x ` 0x2 ` ¨ ¨ ¨ ` 0xn satisfies 0 ` p “ 0 “ p ` 0 for any

other polynomial p P Pn. So VA1 is satisfied.
Given a polynomial p, ´p is also a polynomial of the same degree as p, so VA2 is

satisfied.
It is easy to check that VA3 and VA4 also hold.
Given a polynomial p as above and a real number λ P R, then

λp “ pλa0q ` pλa1qx ` pλa2qx2 ` ¨ ¨ ¨ ` pλanqxn

is another polynomial of degree at most n, so SM0 holds. It is then also easy to check
that SM1-SM4 hold as well. E.g., for SM2:
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λ ¨ pµpq “ λ ¨ ppµa0q ` pµa1qx ` pµa2qx2 ` ¨ ¨ ¨ ` pµanqxnq

“ pλµa0q ` pλµa1qx ` pλµa2qx2 ` ¨ ¨ ¨ ` pλµanqxn

“ pλµqp

So the set Pn of polynomials of degree at most n forms a vector space.
˛ If we take just the set of polynomials of degree exactly n, they do not form a vector space:
For example,

p3 ` 2x ` 5x2q ` p2 ` x ´ 5x2q “ 5 ` 3x

the sum of two degree 3 polynomials might have smaller degree. So VA0 is not satisfied.
˛ Let Cr0, 1s be the set of continuous functions from r0, 1s ÝÑ R, i.e. real valued continuous
functions on the interval r0, 1s. We can add such functions pointwise, meaning pf`gqpxq “

fpxq ` gpxq, and we can multiply such a function by a scalar: pλfqpxq “ λ ¨ fpxq. Then:

¨ The sum of two continuous functions is again continuous, so VA0 holds.

¨ The zero function fpxq “ 0 is continuous, and satisfies VA1.

¨ If f is continuous, then so is λf for any real number λ, so SM0 is satisfied. Taking
λ “ ´1 gives a function which satisfies VA2.

¨ VA3 and VA4, and SM1-4, can be easily checked. For example, SM3: To check two
functions r0, 1s ÝÑ R are equal, we have to check that they do the same thing on
each x P r0, 1s:

ppλ ` µqfqpxq “ pλ ` µq ¨ fpxq “ λ ¨ fpxq ` µ ¨ fpxq

and

pλf ` µfqpxq “ pλfqpxq ` pµfqpxq “ λ ¨ fpxq ` µ ¨ fpxq

So pλ ` µqf “ λf ` µf .
˛ Let V be the set of all infinite real sequences, with entry-wise addition and scalar mul-
tiplication. I.e. paiqi ` pbiqi “ pai ` biqi, and λpaiqi “ pλaiqi. This also forms a vector
space.

˛ If we take the set P of all real polynomials (regardless of degree), then we also get a
vector space.

As you can see in these examples, the way you prove that some given set with two operations is a
vector space is the following:

˛ Identify the set V whose elements are the vectors.
˛ Identify the operations of addition and scalar multiplication. (I.e. how are these
defined in your example of V ?)

˛ Verify that these operations satisfy VA0 and SM0. We then say that V is closed
under addition and scalar multiplication.

˛ Verify that there is a zero vector (i.e. VA1) and that there are negative vectors (i.e.
VA2).

˛ Verify all the other axioms.

Exercise 4.3: Show that the last two examples, infinite sequences and all polynomials, form a
vector space.

We can have some slightly stranger vector spaces:

Example 4.4: (Unusual vector space) Let V “ R`, the set of positive real numbers, and let
u ` v “ u ¨ v, i.e. vector addition is multiplication of the real numbers, and let λu “ uλ, i.e. scalar
multiplication is exponentiation.
So, for example 1 ` 1 “ 1 and 2 ¨ 1 “ 12 “ 1.
Is this a vector space?

˛ We have identified the set V and the two operations.
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˛ If u, v are positive real numbers, then their vector sum u ` v “ u ¨ v is again a positive
real number. So VA0 holds.

˛ If u is a positive real number, then λ ¨ u “ uλ, any power of u, is also a positive real
number. So SM0 holds.

˛ The “zero vector” is the number 1: 1 ` u “ 1 ¨ u “ u, and u ` 1 “ u ¨ 1 “ u.
˛ “Negative vectors” are the reciprocals: u ` 1

u “ u ¨ 1
u “ 1, the zero vector.

˛ VA3 and VA4 hold, because for multiplication of real numbers we have pu¨vq¨w “ u¨pv¨wq,
and u ¨ v “ v ¨ u.

˛ SM1: 1 ¨ v “ v1 “ v so this is true.
˛ SM2: λ ¨ pµvq “ pµvqλ “ pvµqλ “ vλ¨µ “ pλµqv by rules of indices.
˛ SM3: pλ`µqv “ vλ`µ “ vλ ¨ vµ “ pλvq ` pµvq by rules of indices and definition of vector
addition.

˛ SM4: λpu ` vq “ pu ¨ vqλ “ uλ ¨ vλ “ pλuq ` pλvq.

So this is a vector space!

Example 4.5: Let V “ R2 with the usual vector addition, but define scalar multiplication like

this: for v “

˜

v1

v2

¸

P R2 and λ P R, let

λv “

˜

λv1

0

¸

.

Is this also a vector space?

˛ We have identified the set V , and the operations: vector addition as usual, and scalar
multiplication as above.

˛ We verify VA0:

˜

v1

v2

¸

`

˜

w1

w2

¸

“

˜

v1 ` w1

v2 ` w2

¸

P R2. And SM0: λv “

˜

λv1

0

¸

P R2.

˛ As the vector addition is the usual one, the zero vector 0 “

˜

0

0

¸

satisfies VA1. Similarly,

´v “

˜

´v1

´v2

¸

satisfies VA2.

˛ Let’s try to verify the other axioms:
VA3 and VA4 only involve vector addition, and that is the same as for the normal

R2, so they hold.

SM1: 1 ¨ v “

˜

v1

0

¸

‰ v so SM1 does not hold.

So this is not a vector space!

The point of defining such an abstract structure is that we can use just those axioms to prove
things that will hold for any example of a vector space. For example, zero vectors and negative
vectors behave as we expect them to:

Proposition 4.6: (Zeros and negatives in vector spaces)
Let V be a vector space. Then

(i) The zero vector is unique.
(ii) For any v P V , 0v “ 0: zero times any vector gives the zero vector.
(iii) For any λ P R, λ0 “ 0: any multiple of the zero vector is still the zero vector.
(iv) If λv “ 0, then either λ “ 0 P R, or v “ 0 P V .
(v) For any v P V , the negative ´v is unique.
(vi) For any v P V , p´1qv “ ´v, the negative of v.

You can view this as lots of examples on how we use axioms to prove simple statements.
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Proof. We don’t know anything about V except that it satisfies the axioms VA0-4 and SM0-
4. So in our proofs, that is the only thing we can use. We will record carefully which axioms are
used where.

(i) Suppose we have two zero vectors 0 and 01 which both satisfy Axiom VA1. Then

01 “ 01 ` 0 using VA1 for 0

“ 0 using VA1 for 01

(ii) We have

v “ 1 ¨ v using SM1, unit scalar

“ p1 ` 0q ¨ v calculating in R
“ 1 ¨ v ` 0 ¨ v using SM3, distributivity

“ v ` 0 ¨ v using SM1, unit scalar

ô p´vq ` v “ p´vq ` pv ` 0 ¨ vq adding ´v to both sides

ô p´vq ` v “ pp´vq ` vq ` 0 ¨ v using VA3, associativity

ô 0 “ 0 ` 0 ¨ v using VA2, negative vectors

ô 0 “ 0 ¨ v using VA1, zero vector

(iii) Exercise. There are different ways you can do this: using 0 ` 0 “ 0 and the existence of
negative vectors (i.e. using VA1 and VA2, with ideas similar to ii), or using vi.

(iv) If λ “ 0 then we are done. Suppose λ ‰ 0. So we want to show that v “ 0. As λ ‰ 0, we
have 1

λ P R. So

v “ 1 ¨ v using SM1, unit scalar

“ p
1

λ
λq ¨ v calculating in R

“
1

λ
pλvq using SM2

“
1

λ
¨ 0 by assumption: λv “ 0

“ 0 using iii

(v) Suppose a given v P V has two negatives: u and w. So v`w “ 0 “ w`v and v`u “ 0 “ u`v,
i.e. both u and w satisfy VA2 for v. Then

u “ u ` 0 using VA1, zero vector

“ u ` pv ` wq using VA2 with w

“ pu ` vq ` w using VA3, associativity

“ 0 ` w using VA2 with u

“ w using VA1, zero vector.

So u “ w “ ´v, the negative is unique.
This is exactly the same proof as “inverse matrices are unique”. This is because negatives

are the “inverse with respect to addition”.
(vi) We have

v ` p´1q ¨ v “ 1 ¨ v ` p´1q ¨ v using SM1, unit scalar

“ p1 ` p´1qq ¨ v using SM3, distributivity

“ 0 ¨ v calculating in R
“ 0 using ii

Similarly p´1q ¨ v ` v “ 0. So p´1q ¨ v satisfies the condition to be the negative of v, so by
uniqueness of negatives, p´1qv “ ´v. □

This result tells us that the following example is possible:
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Example 4.7: The smallest possible vector space is the zero vector space: 0 “ t0u. It has only
one vector in it, the zero vector. It is closed under vector addition because 0 ` 0 “ 0 by VA1. It
is closed under scalar multiplication, because λ ¨ 0 “ 0, by Proposition 4.6iii. All the other axioms
are easy to check, because we have just one vector.

B. Subspaces

We already saw in Chapter 1 that the vector space Rn can have subspaces: smaller vector spaces
that are inside Rn. We will recap the definition, now applying it to any vector space V , not just
Rn.

Definition 4.8: Let V be a vector space. A subspace of V is a subset W Ď V that is also a
vector space, with the same vector addition and scalar multiplication as V . We write W ď V
when W is a subspace of V .

Examples 4.9: ˛ Every vector space V has the zero space as a subspace, and itself as a
subspace.

0 ď V and V ď V

˛ We have seen subspaces such as
$

’

’

’

&

’

’

’

%

¨

˚

˚

˚

˝

x1

x2

x3

0

˛

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1, x2, x3 P R

,

/

/

/

.

/

/

/

-

ď R4

and
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

x3

x1 ´ x2

3x3

˛

‹

‹

‹

‹

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1, x2, x3 P R

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

ď R5

˛ As mentioned above, the set containing only 0 is a subspace of R with usual addition,
and usual multiplication as scalar multiplication. (I.e. viewing R as R1, vectors with one
entry.)

˛ The “unusual vector space” R` with u ` v “ u ¨ v and λv “ vλ is not a subspace of
R: while positive real numbers are a subset of all real numbers, the vector addition and
scalar multiplication are not the same in the two vector spaces.

˛ In fact the only subspaces of R are 0 and R: if a subspace W ď R has some element
w P W , w ‰ 0, then as W is closed under scalar multiplication, we get 1

w ¨ w “ 1 P W .
Then for any x P R, we get x ¨ 1 P W , so W is all of R.

Proposition 4.10: (Subspace conditions)
A subset W Ď V of a vector space V is a subspace if and only if it satisfies:

˛ 0 P W (zero vector is in the set)
˛ for any u, v P W , u ` v P W (closed under vector addition)
˛ for any v P W and any λ P R, λv P W (closed under scalar mult)

Proof. If we check these three, then we automatically get negative vectors: ´v “ p´1q ¨ v by
Proposition 4.6.
The other axioms VA3-4 and SM1-4 are inherited from V .
Conversely, if W is a subspace, then it is a vector space with same addition and scalar multi-
plication, so by definition it is closed under addition and scalar multiplication. We also have the
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existance of a zero vector 0W which satisfies 0W ` w “ w for all w P W . How do we know that
this zero vector for W is the same as the zero vector for V ?
We know from Proposition 4.6 that in any vector space, zero times any vector gives the zero vector.
So if w P W , we have 0 ¨w “ 0W . But w is also in V , so 0 ¨w “ 0V also. So we must have 0W “ 0V :
the zero vector is the same for the subspace as for the bigger space. □

Let’s see some subspaces of the vector space of all n ˆ n matrices Mn,n.

Examples 4.11: ˛ The set of diagonal n ˆ n matrices forms a subspace of Mn,n.

¨ The zero matrix is diagonal.

¨ Adding two diagonal matrices gives another diagonal matrix.

¨ The scalar multiple of a diagonal matrix is another diagonal matrix.
˛ The set of upper triangular n ˆ n matrices forms a subspace of Mn,n.

¨ The zero matrix is upper triangular.

¨ Adding two upper triangular matrices gives another upper triangular matrix. Es-
sentially this is because in the entries below the diagonal we have 0 ` 0 “ 0.

¨ The scalar multiple of an upper triangular matrix is upper triangular. This is because
in the entries below the diagonal, we have λ ¨ 0 “ 0.

˛ In the same way, the set of lower triangular n ˆ n matrices forms a subspace of Mn,n.

We can have some more:

Definition 4.12: A square matrix A is called symmetric if A “ AT . It is called skew-
symmetric or anti-symmetric if A “ ´AT .

Examples 4.13: These matrices are symmetric:

˛

˜

1 3

3 2

¸

˛

˜

´23 19

19 37

¸

˛

¨

˚

˝

3 4 5

4 8 2

5 2 9

˛

‹

‚

These matrices are anti-symmetric:

˛

˜

0 3

´3 0

¸

˛

˜

0 ´19

19 0

¸

˛

¨

˚

˝

0 4 5

´4 0 ´2

´5 2 0

˛

‹

‚

Another way to view symmetric matrices is to say that A is symmetric if aij “ aji for all i, j. And
an anti-symmetric matrix has to satisfy aij “ ´aij .
Notice that the diagonal elements of a symmetric matrix are completely unrestricted, but the
diagonal elements of anti-symmetric matrices all have to be 0. That is because aii “ ´aii in an
anti-symmetric matrix.

Example 4.14: The set Symn of symmetric n ˆ n matrices forms a subspace of Mn,n.

˛ The zero matrix 0 satisfies 0T “ 0, so it is symmetric.
˛ If A, B are symmetric, then pA ` BqT “ AT ` BT “ A ` B, so the sum is symmetric.
˛ If A is symmetric and λ P R, then pλAqT “ λAT “ λA, so it is also symmetric.

Exercise 4.15: Show that the set ASymn of anti-symmetric matrices form a subspace of Mn,n.

If we have two subspaces U ď V and W ď V , we can form their intersection, and we can form
their union.

Proposition 4.16: (Intersection and union of subspaces)
Let V be a vector space, and U, W be subspaces of V . Then

(i) The intersection U X W is also a subspace of V .
(ii) The union U Y W is a subspace of V if and only if either U Ď W or W Ď U .
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Proof. Exercise. □

So the second statement here shows that unions are hardly ever subspaces. The right way to
“combine” subspaces is not by using union, but by using sum.

Definition 4.17: Let U, W be two subspaces of the vector space V . The vector space sum
U ` W is the set of vectors

U ` W “ tu ` w | u P U, w P W u .

Proposition 4.18: (Sum of subspaces)
Let U, W be subspace of a vector space V . Then the sum U ` W is another subspace of V
which contains both U and W : U ď U ` W and W ď U ` W .

Proof. ˛ 0 “ 0 ` 0, with 0 P U and 0 P W , so 0 P U ` W .
˛ If u1 `w1 and u2 `w2 are two elements of U `W , then their sum is pu1 `u2q`pw1 `w2q,
with u1 ` u2 P U and w1 ` w2 P W , because both subspaces are closed under addition.
So the sum is again in U ` W .

˛ If u`w P U `W and λ P R, then λpu`wq “ λu`λw, with λu P U and λw P W , because
both subspaces are closed under scalar multiplication. So λpu ` wq P U ` W .

So U ` W ď V .
For any u P U , we have u “ u ` 0 P U ` W , because 0 P W . Similarly, for any w P W , we have
w “ 0 ` w P U ` W . So U ` W contains both U and W . □

Examples 4.19: ˛ Let U “

#˜

x

0

¸
ˇ

ˇ

ˇ

ˇ

ˇ

x P R

+

and W “

#˜

0

y

¸
ˇ

ˇ

ˇ

ˇ

ˇ

y P R

+

be subspaces of

R2. Then U ` W “

#˜

x

0

¸

`

˜

0

y

¸
ˇ

ˇ

ˇ

ˇ

ˇ

x, y P R

+

“ R2.

This shows you the difference of union and sum: the union of the x-axis and the
y-axis is just the set of the two lines, but the sum of the x-axis and the y-axis gives the
whole plane. This is what we need when we are combining vector spaces.

The sum of two subspaces is the smallest subspace that contains them both.

˛ Let U “

$

’

&

’

%

¨

˚

˝

x

y

0

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x, y P R

,

/

.

/

-

and W “

$

’

&

’

%

¨

˚

˝

0

y

z

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y, z P R

,

/

.

/

-

. Then U `W “ R3, but there

is some intersection: U X W “

$

’

&

’

%

¨

˚

˝

0

y

0

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y P R

,

/

.

/

-

.

We see that if U X W is not just the zero space, then there is some “superfluity” in the sum.
Sometimes it might be nice to distinguish between these situations.

Definition 4.20: Given subspaces U, W ď V , we say the sum U ` W is a direct sum, and
write U ‘ W , if U X W “ 0, the intersection is just the zero space.

Examples 4.21: In the previous examples, the first one is a direct sum, but the second one isn’t.

Proposition 4.22: (Symmetric and anti-symmetric matrices)
The vector space Mn,n of n ˆ n matrices is the direct sum of the subspaces of symmetric and
anti-symmetric matrices.

Mn,n “ Symn ‘ ASymn
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Proof. We know that Symn ` ASymn Ď Mn,n. So we have to show that any n ˆ n matrix
A can be written as the sum of a symmetric matrix and an anti-symmetric matrix.
Given A, note that A ` AT is symmetric and A ´ AT is anti-symmetric. And we have

A “
1

2
pA ` AT q `

1

2
pA ´ AT q,

so Mn,n “ Symn ` ASymn.
To show that this is a direct sum, we have to show that Symn X ASymn “ 0. Suppose A is
symmetric and anti-symetric. Then A “ AT and A “ ´AT , so A “ ´A, so A “ 0.
So Mn,n “ Symn ‘ ASymn. □

C. Column space and Null space

We can view the subspace conditions (Prop. 4.10) as saying that a subspace is a non-empty subset
which is closed under linear combinations. So we should expect that “taking linear combinations
of some vectors” should give us a subspace.

Definition 4.23: Given a non-empty set of vectors S “ tw1, w2, . . . , wru in a vector space
V , then the span of S, written

SpanpSq “ Spanpw1, w2, . . . , wrq “ ⟨w1, w2, . . . , wr⟩
is the set of all linear combinations of the vectors in S.

⟨w1, w2, . . . , wr⟩ “ tλ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λrwr | λ1, . . . , λr P Ru

The span of the empty set is the zero space:

SpanpHq “ 0.

Note that in our notation, the set S is finite. We can form spans of infinite sets: in that case,
a linear combination of an infinite number of vectors can only have finitely many of the λ being
non-zero. But mostly we’ll consider spans of finite sets.

Proposition 4.24: (Span gives subspace)
The span of any non-empty subset S of V is a subspace of V .
Moreover, this is the smallest subspace of V which contains all elements of S.

The second sentence means: if W is any other subspace of V with S Ă W , then SpanpSq Ď W .

Proof. Let S “ tw1, w2, . . . , wru.

˛ 0 P SpanpSq because 0 “ 0 ¨w1 ` 0 ¨w2 ` ¨ ¨ ¨ ` 0 ¨wr is a linear combination of the vectors
in S.

˛ Given two linear combinations u “ λ1w1 ` ¨ ¨ ¨ ` λrwr and v “ µ1w1 ` ¨ ¨ ¨ ` µrwr, their
sum is again a linear combination of the vectors in S:

u ` v “ pλ1 ` µ1qw1 ` pλ2 ` µ2qw2 ` ¨ ¨ ¨ ` pλr ` µrqwr.

So u, v P SpanpSq ñ u ` v P SpanpSq.
˛ Given u “ λ1w1 ` ¨ ¨ ¨ ` λrwr P SpanpSq and a scalar µ P R, then

µu “ pµλ1qw1 ` pµλ2qw2 ` ¨ ¨ ¨ ` pµλrqwr P SpanpSq.

So SpanpSq ď V .
Now any subspace of V is closed under taking linear combinations. So if we want all elements of S
to be in a subspace, then all linear combinations of elements of S must also be in that subspace. So
taking just the linear combinations of elements of S is the smallest subspace of V which contains
all elements of S. □

Sometimes the span of a set might give the whole vector space V .
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Definition 4.25: We say that a set S “ tw1, w2, . . . , wru spans V if SpanpSq “ V . If S
spans V , we also call S a spanning set for V .

So if S spans V , then any vector v P V can be written (in at least one way) as a linear combination
of vectors from S.

Examples 4.26: ˛ The set

#˜

1

0

¸

,

˜

0

1

¸+

spans R2:

˜

x

y

¸

“ x

˜

1

0

¸

` y

˜

0

1

¸

so any vector in R2 is a linear combination of those two vectors.

˛ The set

#˜

1

0

¸

,

˜

0

1

¸

,

˜

1

1

¸+

also spans R2: the linear combinations need not be unique.

˜

x

y

¸

“ x

˜

1

0

¸

` y

˜

0

1

¸

` 0

˜

1

1

¸

“ 0

˜

1

0

¸

` py ´ xq

˜

0

1

¸

` x

˜

1

1

¸

“ px ´ yq

˜

1

0

¸

` 0

˜

0

1

¸

` y

˜

1

1

¸

“ p´yq

˜

1

0

¸

` p´xq

˜

0

1

¸

` px ` yq

˜

1

1

¸

“ . . .

˛ The set

$

’

&

’

%

¨

˚

˝

1

1

0

˛

‹

‚

,

¨

˚

˝

´1

1

0

˛

‹

‚

,

¨

˚

˝

1

1

1

˛

‹

‚

,

/

.

/

-

spans R3:

¨

˚

˝

x

y

z

˛

‹

‚

“

ˆ

x ` y

2
´ z

˙

¨

˚

˝

1

1

0

˛

‹

‚

`

ˆ

y ´ x

2

˙

¨

˚

˝

´1

1

0

˛

‹

‚

` z

¨

˚

˝

1

1

1

˛

‹

‚

We will learn later how to find these coefficients.

˛ In Rn, let e1 “

¨

˚

˚

˚

˚

˝

1

0
...

0

˛

‹

‹

‹

‹

‚

, . . . , en “

¨

˚

˚

˚

˚

˝

0
...

0

1

˛

‹

‹

‹

‹

‚

, i.e. ek is the vector with zeros everywhere except a

1 in the kth entry. Then e1, . . . , en span Rn.

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

“ x1

¨

˚

˚

˚

˚

˚

˚

˝

1

0
...

0

0

˛

‹

‹

‹

‹

‹

‹

‚

` x2

¨

˚

˚

˚

˚

˚

˚

˝

0

1

0
...

0

˛

‹

‹

‹

‹

‹

‹

‚

` ¨ ¨ ¨ ` xn´1

¨

˚

˚

˚

˚

˚

˚

˝

0
...

0

1

0

˛

‹

‹

‹

‹

‹

‹

‚

` xn

¨

˚

˚

˚

˚

˚

˚

˝

0

0
...

0

1

˛

‹

‹

‹

‹

‹

‹

‚

“ x1e1 ` x2e2 ` ¨ ¨ ¨ ` xn´1en´1 ` xnen

These vectors are very useful vectors and come back again and again. Let’s call them the
standard unit vectors.
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˛ The vectors

¨

˚

˝

1

0

0

˛

‹

‚

,

¨

˚

˝

0

1

0

˛

‹

‚

span the x, y-plane in R3. But so do the vectors

¨

˚

˝

1

1

0

˛

‹

‚

,

¨

˚

˝

1

´1

0

˛

‹

‚

.

So we have 〈¨

˚

˝

1

0

0

˛

‹

‚

,

¨

˚

˝

0

1

0

˛

‹

‚

〉
“

〈¨

˚

˝

1

1

0

˛

‹

‚

,

¨

˚

˝

1

´1

0

˛

‹

‚

〉
.

˛ The monomials t1, x, x2, . . . , xnu span the polynomial space Pn: any poly is a linear
combination of these monomials.

p “ anx
n ` an´1x

n´1 ` ¨ ¨ ¨ ` a1x ` a0 ¨ 1

We’ve seen that different sets can span the same subspace.

Proposition 4.27: (Equal spans)
Given two non-empty subsets S and S1 of a vector space V , then SpanpSq “ SpanpS1q if and
only if every vector in S is a linear combination of vectors in S1, and every vector in S1 is a
linear combination of vectors in S.

Proof. Exercise. (See steps in workbook.) □

Given any m ˆ n matrix A, the n columns of A are vectors in Rm:

A “

´

Ò Ò Ò
a1 ¨¨¨ ak ¨¨¨ an

Ó Ó Ó

¯

with a1, a2, . . . , an P Rm

So we can consider the span of the columns of A, and this is a subspace of Rm.

Definition 4.28: Given an m ˆ n matrix A, the column space of A is the space spanned
by the columns of A.

For A “

´

Ò Ò Ò
a1 ¨¨¨ ak ¨¨¨ an

Ó Ó Ó

¯

, ColpAq “ ⟨a1, . . . , an⟩ .

This has a link to linear systems: recall that

Ax “

¨

˚

˚

˚

˚

˚

˚

˝

Ò Ò Ò

a1 ¨ ¨ ¨ ak ¨ ¨ ¨ an

Ó Ó Ó

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

x1

x2

...

xn´1

xn

˛

‹

‹

‹

‹

‹

‹

‚

“ x1

¨

˚

˚

˚

˚

˚

˚

˝

Ò

a1

Ó

˛

‹

‹

‹

‹

‹

‹

‚

` x2

¨

˚

˚

˚

˚

˚

˚

˝

Ò

a2

Ó

˛

‹

‹

‹

‹

‹

‹

‚

` ¨ ¨ ¨ ` xn´1

¨

˚

˚

˚

˚

˚

˚

˝

Ò

an´1

Ó

˛

‹

‹

‹

‹

‹

‹

‚

` xn

¨

˚

˚

˚

˚

˚

˚

˝

Ò

an

Ó

˛

‹

‹

‹

‹

‹

‹

‚

So for any given vector x P Rn, Ax is a linear combination of the columns of A, so Ax P ColpAq,
it is in the column space of A. This gives us

Proposition 4.29: Let A be an m ˆ n matrix and b P Rm. Then

Ax “ b is consistent ô b is a linear combination of the columns of A ô b P ColpAq.

Proof. The second equivalence is by definition of ColpAq. The first equivalence holds because
Ax is a linear combination of the columns of A, as seen above. □

We can also saying

Proposition 4.30: Let A be an m ˆ n matrix. Then the following are equivalent:

(i) For every b P Rm, the linear system Ax “ b has a solution.
(ii) Every b P Rm is in ColpAq (i.e. is a linear combination of the columns of A).
(iii) ColpAq “ Rm: the columns of A span all of Rm.
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Proof. i ôii follows from Proposition 4.29.
ii ôiii: We know ColpAq ď Rm, so the two spaces are equal if and only if every vector b P Rm is
in ColpAq. But that is exactly what ii says. □

These two results give us a method to find out if a given vector is in a given span.

Corollary 4.31: (Finding linear combinations)
Let S “ ta1, . . . , anu be a finite set of vectors in a vector space V . Then b P V is a linear
combination of the vectors a1, . . . , an (i.e. b P SpanpSq) if and only if Ax “ b has a solution.

Moreover, any such solution x “

¨

˚

˚

˝

x1

...

xn

˛

‹

‹

‚

provides the coefficients for the linear combination:

b “ x1a1 ` x2a2 ` ¨ ¨ ¨ ` xnan

So

Finding a linear combination To work out whether b P Rm is a linear combination of
a1, . . . , an P Rm:

˛ Try to solve the linear system Ax “ b.
˛ If it has a solution, then that solution gives the coefficients of the linear combination.

Example 4.32: Is b “

¨

˚

˝

3

3

1

˛

‹

‚

a linear combination of a1 “

¨

˚

˝

1

1

1

˛

‹

‚

and a2 “

¨

˚

˝

1

1

´1

˛

‹

‚

?

Try to solve

¨

˚

˝

1 1

1 1

1 ´1

˛

‹

‚

˜

x1

x2

¸

“

¨

˚

˝

3

3

1

˛

‹

‚

.

¨

˚

˝

1 1

1 1

1 ´1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3

3

1

˛

‹

‚

ÝÑ

¨

˚

˝

1 1

0 0

0 ´2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3

0

´2

˛

‹

‚

ÝÑ

¨

˚

˝

1 1

0 1

0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3

1

0

˛

‹

‚

ÝÑ

¨

˚

˝

1 0

0 1

0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

1

0

˛

‹

‚

So we have the solution

˜

x1

x2

¸

“

˜

2

1

¸

. So b “ 2 ¨ a1 ` 1 ¨ a2. (It is a good idea to check it:)

¨

˚

˝

3

3

1

˛

‹

‚

“ 2 ¨

¨

˚

˝

1

1

1

˛

‹

‚

` 1 ¨

¨

˚

˝

1

1

´1

˛

‹

‚

.

We can also use this technique to work out if a given set spans all of Rn.

Examples 4.33: ˛ Do the vectors

a1 “

¨

˚

˝

1

´4

´3

˛

‹

‚

, a2 “

¨

˚

˝

3

2

´2

˛

‹

‚

, a3 “

¨

˚

˝

4

´6

´7

˛

‹

‚

span all of R3? The vectors will span all of R3 if we can write an arbitrary vector
¨

˚

˝

x

y

z

˛

‹

‚

P R3 as a linear combination of a1, a2, a3.
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So we want to solve the linear system

Ax “

¨

˚

˝

1 3 4

´4 2 ´6

´3 ´2 ´7

˛

‹

‚

¨

˚

˝

x1

x2

x3

˛

‹

‚

“

¨

˚

˝

x

y

z

˛

‹

‚

.

¨

˚

˝

1 3 4

´4 2 ´6

´3 ´2 ´7

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

y

z

˛

‹

‚

ÝÑ

¨

˚

˝

1 3 4

0 14 10

0 7 5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

y ` 4x

z ` 3x

˛

‹

‚

ÝÑ

¨

˚

˝

1 3 4

0 7 5

0 0 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x
y`4x

2

z ` 3x ´
y`4x

2

˛

‹

‚

We can see that this system is in general inconsistent. (It is only consistent for some
special constellations of x, y, z, not for all x, y, z). So these three vectors do not span

all of R3. For example,

¨

˚

˝

1

0

0

˛

‹

‚

is not in the span of the three vectors.

˛ Do the vectors a1 “

˜

1

2

¸

, a2 “

˜

2

1

¸

and a3 “

˜

´1

4

¸

span all of R2?

Solve

Ax “

˜

1 2 ´1

2 1 4

¸

¨

˚

˝

x1

x2

x3

˛

‹

‚

“

˜

x

y

¸

.

˜

1 2 ´1

2 1 4

ˇ

ˇ

ˇ

ˇ

ˇ

x

y

¸

ÝÑ

˜

1 2 ´1

0 ´3 6

ˇ

ˇ

ˇ

ˇ

ˇ

x

y ´ 2x

¸

ÝÑ

˜

1 2 ´1

0 1 ´2

ˇ

ˇ

ˇ

ˇ

ˇ

x
2x´y

3

¸

ÝÑ

˜

1 0 3

0 1 ´2

ˇ

ˇ

ˇ

ˇ

ˇ

x ´
2p2x´yq

3
2x´y

3

¸

This system has a solution (in fact infinitely many), so the given three vectors do span
R2.

For example, choosing x3 “ 0, we can write
˜

x

y

¸

“

ˆ

´
1

3
x `

2

3
y

˙

˜

1

2

¸

`

ˆ

2

3
x ´

1

3
y

˙

˜

2

1

¸

.

˛ Do the vectors

a1 “

¨

˚

˝

1

2

´3

˛

‹

‚

, a2 “

¨

˚

˝

1

1

3

˛

‹

‚

, a3 “

¨

˚

˝

2

3

3

˛

‹

‚

span all of R3?
Solve

Ax “

¨

˚

˝

1 1 2

2 1 3

´3 3 3

˛

‹

‚

¨

˚

˝

x1

x2

x3

˛

‹

‚

“

¨

˚

˝

x

y

z

˛

‹

‚

.

¨

˚

˝

1 1 2

2 1 3

´3 3 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

y

z

˛

‹

‚

ÝÑ

¨

˚

˝

1 1 2

0 ´1 ´1

0 6 9

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

y ´ 2x

z ` 3x

˛

‹

‚

ÝÑ

¨

˚

˝

1 1 2

0 1 1

0 0 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

2x ´ y

z ` 3x ´ p12x ´ 6yq

˛

‹

‚

ÝÑ

¨

˚

˝

1 1 2

0 1 1

0 0 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

2x ´ y

z ` 3x ´ p12x ´ 6yq

˛

‹

‚

ÝÑ

¨

˚

˝

1 1 2

0 1 1

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

2x ´ y
z`6y´9x

3

˛

‹

‚

ÝÑ

¨

˚

˝

1 1 0

0 1 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x ´ p 2
3z ` 4y ´ 6xq

2x ´ y ´ p 1
3z ` 2y ´ 3xq

1
3z ` 2y ´ 3x

˛

‹

‚

ÝÑ

¨

˚

˝

1 0 0

0 1 0

0 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

7x ´ 4y ´ 2
3z ´ p5x ´ 3y ´ 1

3zq

5x ´ 3y ´ 1
3z

1
3z ` 2y ´ 3x

˛

‹

‚
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So, as this system has a solution, the three vectors do span R3. And we have

¨

˚

˝

x

y

z

˛

‹

‚

“

ˆ

2x ´ y ´
1

3
z

˙

¨

˚

˝

1

2

´3

˛

‹

‚

`

ˆ

5x ´ 3y ´
1

3
z

˙

¨

˚

˝

1

1

3

˛

‹

‚

`

ˆ

1

3
z ` 2y ´ 3x

˙

¨

˚

˝

2

3

3

˛

‹

‚

.

Important: we will be solving linear systems a lot in the rest of the course. It is crucial that you
keep in mind the meaning of what you are doing: we usually solve a linear system for a reason, to
find out something else we want to know. When you’ve solved a linear system, you then have to
translate it back into what it means for the question you were trying to answer.

There is an alternative method in the case when we have a square matrix: Recall from invertible
linear systems (Proposition 3.30) that an n ˆ n matrix A is invertible if and only if Ax “ b is
consistent for all b P Rn. So given n vectors a1, . . . , an P Rn, we know that

⟨a1, . . . , an⟩ “ Rn ô A “

´

Ò Ò Ò
a1 ¨¨¨ ak ¨¨¨ an

Ó Ó Ó

¯

is invertible.

So the above links spans and the column space of a matrix to the existence of solutions of certain
linear systems. We can also look at the set of solutions of certain linear systems.
We already mentioned in Chapter 2 that the solutions of a homogeneous linear system form a
subspace.

Recall: The set of solutions to a homogeneous linear system Ax “ 0 with n variable forms a
subspace of Rn. See Proposition 2.29.

This has a name:

Definition 4.34: For any m ˆ n matrix A, the set of vectors tx P Rn | Ax “ 0u is called the
null space of A, written NullA. Another name for the null space is the kernel of A, written
KerA.

We will learn more about kernels in the second semester.

Examples 4.35: ˛ Any invertible matrix has NullA “ 0: Ax “ 0 has only the trivial
solution x “ 0, so the null space of A is the zero space.

A square matrix is invertible if and only if NullA “ 0.

˛ The null space of A “

¨

˚

˝

1 3 4

´4 2 ´6

´3 ´2 ´7

˛

‹

‚

is the set of solutions to Ax “ 0:

¨

˚

˝

1 3 4

´4 2 ´6

´3 ´2 ´7

˛

‹

‚

ÝÑ

¨

˚

˝

1 3 4

0 14 10

0 7 5

˛

‹

‚

ÝÑ

¨

˚

˝

1 3 4

0 1 5
7

0 0 0

˛

‹

‚

ÝÑ

¨

˚

˝

1 0 13
7

0 1 5
7

0 0 0

˛

‹

‚

So

NullA “

$

’

&

’

%

t

¨

˚

˝

´13

´5

7

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t P R

,

/

.

/

-

˛ A non-square matrix can have the null space being 0 without being invertible (recall a
non-square matrix can never be invertible):
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Let A “

¨

˚

˝

1 2

2 1

3 1

˛

‹

‚

. Find null space:

¨

˚

˝

1 2

2 1

3 1

˛

‹

‚

ÝÑ

¨

˚

˝

1 2

0 ´3

0 ´5

˛

‹

‚

ÝÑ

¨

˚

˝

1 0

0 1

0 0

˛

‹

‚

so NullA “

#˜

0

0

¸+

“ 0.

D. Vector Spaces: Study guide

Concept review.

˛ Vector space, vector space axioms
˛ Space of matrices
˛ Space of polynomials
˛ Properties of zero and negatives in a vector space
˛ Subspace, subspace conditions
˛ Symmetric and skew-symmetric/anti-symmetric matrices
˛ Several matrix subspaces
˛ Intersection and union of subspaces
˛ Sum of subspaces
˛ Direct sum
˛ Span of vectors, spanning set for vector space
˛ Span is a subspace
˛ Column space of a matrix
˛ Null space of a matrix

Skills.

˛ Show a given set with operations is a vector space.
˛ Determine whether a given set with operations is a vector space or not.
˛ Prove simple results using vector space axioms.
˛ Show a given subset is a subspace.
˛ Determine whether a given subset is a subspace or not.
˛ Form intersection and sum of given subspaces.
˛ Determine whether a sum of subspaces is direct or not.
˛ Determine whether a given vector is in the span of a given set of vectors.
˛ Determine whether a set of vectors spans the whole vector space.
˛ Find the coefficients to write a given vector (or a general vector) as the linear combination
of a set of vectors.

˛ Determine whether a given vector is in the column space of a matrix.
˛ Determine the null space of a matrix.
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Linear Independence and Bases

A. Linearly independent sets

We have seen that when we write a given vector as the linear combination of a set of vectors,
sometimes we only have one way of doing this and sometimes we have several different ways of
doing this. For example,

˜

x

y

¸

“ x

˜

1

0

¸

` y

˜

0

1

¸

` 0

˜

1

1

¸

“ 0

˜

1

0

¸

` py ´ xq

˜

0

1

¸

` x

˜

1

1

¸

“ . . .

has many options, but when using just the first two vectors
˜

x

y

¸

“ x

˜

1

0

¸

` y

˜

0

1

¸

there is only one option. We will now investigate the relationship between the vectors which
determines which of these cases happens.
To do this, we focus on the number of ways we can write the zero vector as a linear combination:
Given vectors v1, . . . , vk P V , the equation

λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λkvk “ 0

always has at least one solution: λ1 “ λ2 “ ¨ ¨ ¨ “ λk “ 0. We call this the trivial solution, as
we did for linear systems. The question now is whether there are other solutions for the λi which
also give the zero vector.

Definition 5.1: A subset S “ tv1, . . . , vku Ă V of a vector space V is called linearly inde-
pendent if

λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λkvk “ 0

with λi P R implies that λ1 “ λ2 “ ¨ ¨ ¨ “ λk “ 0.
If there are λi not all zero such that

λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λkvk “ 0

then the vectors are called linearly dependent.
We call such a linear combination with non-zero coefficents a dependence relation.

In words: a set of vectors is linearly independent exactly when the only way to get 0 as a linear
combination of them is to set all coefficients to zero.

Examples 5.2: ˛ The vectors

˜

1

0

¸

,

˜

2

0

¸

are linearly dependent. If you draw them into a

coordinate system, they both lie on the x-axis, so we see they are parallel.
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Two vectors v1, v2 are linearly dependent exactly when they are parallel:

λ1v1 ` λ2v2 “ 0 with λ1 ‰ 0 ñ v1 “ ´
λ2

λ1
v2

v1 “ µv2 ñ 1 ¨ v1 ´ µv2 “ 0

For example, for these two vectors, 2

˜

1

0

¸

´1 ¨

˜

2

0

¸

“

˜

0

0

¸

is a dependence relation.

˛

˜

1

0

¸

and

˜

0

1

¸

are linearly independent. Draw them on a coordinate system.

˛ The vectors

˜

1

0

¸

and

˜

´1

0

¸

are linearly dependent.

˛ It helps your intuition to picture two vectors in the x, y-plane and decide if they are
linearly independent or not. If they lie on the same line, they are dependent. If they do
not lie on the same line, i.e. are not parallel, then they are linearly independent.

˛ Are the vectors

˜

1
1
2

¸

,

˜

1

2

¸

linearly independent?

We want to know if there are any non-zero coefficients such that

λ1

˜

1
1
2

¸

` λ2

˜

1

2

¸

“

˜

0

0

¸

.

To find this out, we could solve the linear system:
˜

1 1
1
2 2

¸

ÝÑ

˜

1 1

0 3
2

¸

ÝÑ

˜

1 1

0 1

¸

ÝÑ

˜

1 0

0 1

¸

So the ony solution is λ1 “ 0 “ λ2. So these two vectors are linearly independent.

˛ The standard unit vectors e1 “

¨

˚

˚

˚

˚

˝

1

0
...

0

˛

‹

‹

‹

‹

‚

, e2 “

¨

˚

˚

˚

˚

˝

0

1
...

0

˛

‹

‹

‹

‹

‚

, . . . , en “

¨

˚

˚

˚

˚

˝

0
...

0

1

˛

‹

‹

‹

‹

‚

are linearly independent

in Rn:

λ1

¨

˚

˚

˚

˚

˝

1

0
...

0

˛

‹

‹

‹

‹

‚

` λ2

¨

˚

˚

˚

˚

˝

0

1
...

0

˛

‹

‹

‹

‹

‚

` ¨ ¨ ¨ ` λn

¨

˚

˚

˚

˚

˝

0
...

0

1

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

0
...

0

0

˛

‹

‹

‹

‹

‚

has unique solution λ1 “ λ2 “ ¨ ¨ ¨ “ λn “ 0.
˛ The monomials 1, x, . . . , xn are linearly independent in Pn:

λ0 ¨ 1 ` λ1 ¨ x ` ¨ ¨ ¨ ` λn ¨ xn “ 0

has unique solution λ0 “ λ1 “ ¨ ¨ ¨ “ λn “ 0.
˛ The polynomials p1 “ 1`x, p2 “ 1`x2 and p3 “ 2`x`x2 are not linearly independent
(so they are linearly dependent):

1 ¨ p1 ` 1 ¨ p2 ´ 1 ¨ p3 “ p1 ` xq ` p1 ` x2q ´ p2 ` x ` x2q “ 0

So there is a non-trivial linear combination of these three polynomials which gives the
zero polyomial. (This is a dependence relation.)

˛ The vectors

˜

1

1

¸

and

˜

1

´1

¸

are linearly independent in R2: To check whether

λ1

˜

1

1

¸

` λ2

˜

1

´1

¸

“

˜

0

0

¸
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has non-trivial solutions, we solve the linear system
˜

1 1

1 ´1

¸˜

λ1

λ2

¸

“

˜

0

0

¸

.

˜

1 1

1 ´1

¸

ÝÑ

˜

1 1

0 ´2

¸

ÝÑ

˜

1 1

0 1

¸

ÝÑ

˜

1 0

0 1

¸

so the only solution is λ1 “ 0, λ2 “ 0. So these two vectors are linearly independent.

˛ The vectors v1 “

¨

˚

˝

1

1

1

˛

‹

‚

, v2 “

¨

˚

˝

1

2

1

˛

‹

‚

, v3 “

¨

˚

˝

4

5

4

˛

‹

‚

are not linearly independent: for example,

3 ¨

¨

˚

˝

1

1

1

˛

‹

‚

` 1 ¨

¨

˚

˝

1

2

1

˛

‹

‚

´ 1 ¨

¨

˚

˝

4

5

4

˛

‹

‚

“

¨

˚

˝

0

0

0

˛

‹

‚

So there is a non-trivial linear combination of the vectors which gives the zero-vector.
How could we find such coefficients? Solving

λ1

¨

˚

˝

1

1

1

˛

‹

‚

` λ2

¨

˚

˝

1

2

1

˛

‹

‚

` λ3

¨

˚

˝

4

5

4

˛

‹

‚

“

¨

˚

˝

0

0

0

˛

‹

‚

gives us:
¨

˚

˝

1 1 4

1 2 5

1 1 4

˛

‹

‚

ÝÑ

¨

˚

˝

1 1 4

0 1 1

0 0 0

˛

‹

‚

ÝÑ

¨

˚

˝

1 0 3

0 1 1

0 0 0

˛

‹

‚

So there are infinitely many solutions, not just λ1 “ λ2 “ λ3 “ 0. So the set is linearly
dependent. Choosing λ3 “ ´1 gives the linear combination we wrote down above.

We can see from these examples that when we have a set of vectors in Rn, we have a method of
finding out if they are linearly independent.

To find out whether a set ta1, a2, . . . , anu of vectors in Rm is linearly independent:

˛ Form the m ˆ n matrix A with the vectors as columns.
˛ Solve the homogeneous linear system Ax “ 0.
˛ If x “ 0 is the only solution, the vectors are linearly independent. If there are other
solutions, then the vectors are linearly dependent.

How do we check in other vector spaces whether a given set of vectors is linearly independent? For
example in a polynomial space or in a matrix space?
This will depend on the example, and we will learn some methods later. With a bit of thinking,
you can make a linear system out of these situations. For example:

˛ In a matrix space, you get one equation per entry of the matrix, which you can put into
a linear system.

˛ In a polynomial space, you can compare coefficients, i.e. you get one equation by looking
at coefficients of xn, another from coefficients of xn´1 and so on. so you can put these
equations into a linear system.

Example 5.3: ˛ Are the matrices A1 “

˜

1 0

0 0

¸

, A2 “

˜

0 1

1 0

¸

, A3 “

˜

0 0

0 1

¸

linearly

independent in M2,2? (They are also all symmetric matrices, so you can think of them
in the vector space Sym2 as well.) We want to solve

λ1

˜

1 0

0 0

¸

` λ2

˜

0 1

1 0

¸

` λ3

˜

0 0

0 1

¸

“

˜

0 0

0 0

¸

.
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Looking at each of the four entries, this gives us four equations:

1 ¨ λ1 ` 0 ¨ λ2 ` 0 ¨ λ3 “ 0

0 ¨ λ1 ` 1 ¨ λ2 ` 0 ¨ λ3 “ 0

0 ¨ λ1 ` 1 ¨ λ2 ` 0 ¨ λ3 “ 0

0 ¨ λ1 ` 0 ¨ λ2 ` 1 ¨ λ3 “ 0

or
¨

˚

˚

˚

˝

1 0 0

0 1 0

0 1 0

0 0 1

˛

‹

‹

‹

‚

¨

˚

˝

λ1

λ2

λ3

˛

‹

‚

“

¨

˚

˚

˚

˝

0

0

0

0

˛

‹

‹

‹

‚

.

We can see that the only solution is λ1 “ λ2 “ λ3 “ 0, so these three matrices are linearly
independent in M2,2 (and in Sym2).

˛ Are the polynomials p1 “ x2 ´ 3x ` 1, p2 “ 2x2 ` x ´ 2 and p3 “ x2 ` 4x ´ 3 linearly
independent in P2?

We want to solve

λ1px2 ´ 3x ` 1q ` λ2p2x2 ` x ´ 2q ` λ3px2 ` 4x ´ 3q “ 0.

Looking at the coefficients of x2, we need

λ1 ` 2λ2 ` λ3 “ 0.

The coefficients of x tell us that we need

´3λ1 ` λ2 ` 4λ3 “ 0.

The constant coefficients give

λ1 ´ 2λ2 ´ 3λ3 “ 0.

So we have to solve
¨

˚

˝

1 2 1

´3 1 4

1 ´2 ´3

˛

‹

‚

¨

˚

˝

λ1

λ2

λ3

˛

‹

‚

“

¨

˚

˝

0

0

0

˛

‹

‚

.

The reduced row echelon form of this matrix is
¨

˚

˝

1 0 ´1

0 1 1

0 0 0

˛

‹

‚

so there are non-trivial solutions. So p1, p2, p3 are not linearly independent.
For example, this is a non-trivial linear combiation of them which gives 0:

p1 ´ p2 ` p3 “ px2 ´ 3x ` 1q ´ p2x2 ` x ´ 2q ` px2 ` 4x ´ 3q “ 0.

As well as having the algebraic way of working out whether a set of vectors is linearly independent,
it’s also good to have an intuition.

Intuition about linear independence

˛ For 2 vectors: dependent ô parallel
˛ For 3 vectors: dependent means they span a plane. Independent means they span a
3-dimensional space.

We phrased the definition of linear independence and dependence by looking at a linear combination
of all the vectors, all on one side of the equation. In most situations, this is the most useful way
to look at this, because that means we have a linear system we can solve, as we’ve seen above.

However, now and then it can be useful to think of it this way:
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Proposition 5.4: Let S “ tv1, v2, . . . , vku be a set of vectors in a vector space V . Then

(i) S is linearly dependent if and only if one of the vectors in S can be written as a linear
combination of the remaining vectors in S.

(ii) S is linearly independent if none of the vectors in S can be written as a linear combination
of the other vectors in S.

Proof. Suppose S is linearly dependent, so we have a dependence relation

λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λkvk “ 0

with not all the λi being zero. So at least one of the λi is non-zero, say λl ‰ 0. Then we can write

vl “ ´
λ1

λl
v1 ´

λ2

λl
v2 ´ ¨ ¨ ¨ ´

λl´1

λl
vl´1 ´

λl`1

λl
vl`1 ` ¨ ¨ ¨ ´

λk

λl
vk.

So we can write vl as a linear combination of the other vectors in S.
Conversely, suppose we can write vl as a linear combination of the other vectors,

vl “ µ1v1 ` ¨ ¨ ¨ ` µl´1vl´1 ` µl`1vl`1 ` ¨ ¨ ¨ ` µkvk

then we can put everything on one side to get the dependence relation

µ1v1 ` ¨ ¨ ¨ ` µl´1vl´1 ´ vl ` µl`1vl`1 ` ¨ ¨ ¨ ` µkvk “ 0.

So S is linearly dependent.
The second statement follows immediately from the first: If all the λi have to be zero to get

λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λkvk “ 0,

then we can’t put any of the vectors on the other side. □

This immediately shows us:

Corollary 5.5: (Easy to spot dependent sets)

(i) Any set containing the zero vector is linearly dependent.
(ii) A set with exactly one vector is linearly independent if and only if that vector is not the

zero vector.
(iii) A set with exactly two vectors is linearly independent if and only if neither vector is a

scalar multiple of the other.

Proof. (i) If S “ tv1, v2, . . . , vku with say vk “ 0, then we have a dependence relation

0v1 ` 0v2 ` ¨ ¨ ¨ ` 0vk´1 ` 1 ¨ vk “ 0,

so the set is linearly dependent.
(ii) If we have only one vector v1, then either v1 “ 0, in which case 1 ¨ v1 “ 0 is a dependence

relation, or v1 ‰ 0, in which case the only way to get zero is 0 ¨ v1.
(iii) We’ve seen this already:

λ1v1 ` λ2v2 “ 0 with λ1 ‰ 0 ñ v1 “ ´
λ2

λ1
v2

v1 “ µv2 ñ 1 ¨ v1 ´ µv2 “ 0

□

Exercise 5.6: Determine if the following sets are linearly independent or not.

˛ t0u in R4. ˛

$

’

&

’

%

¨

˚

˝

1

0

0

˛

‹

‚

,

/

.

/

-

in R3. ˛

#˜

1

1

¸

,

˜

1

´1

¸+

in R2.

˛

$

’

&

’

%

¨

˚

˝

1

´1

0

˛

‹

‚

,

¨

˚

˝

´4

4

0

˛

‹

‚

,

/

.

/

-

in R3. ˛
␣

p1 “ x, p2 “ x2, p3 “ 0
(

in P2.
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Our intuition about a set of two or three vectors being linearly independent or not should tell us:
If I have 3 vectors in R2, then they must be linearly dependent.
In fact, we can prove this in more generality:

Proposition 5.7: (Too many vectors)
A set of more than n vectors in Rn is always linearly dependent.

Proof. Let S “ tv1, v2, . . . , vku be a set of vectors in Rn, with k ą n. Let A be the matrix
with the vectors v1, . . . , vk as columns. So A is an n ˆ k matrix.

A “

¨

˚

˝

Ò Ò Ò

v1 ¨ ¨ ¨ vl ¨ ¨ ¨ vk

Ó Ó Ó

˛

‹

‚

Then the system Ax “ 0, with x “

¨

˚

˚

˝

λ1

...

λk

˛

‹

‹

‚

, has more variables than equations. So the reduced

row echelon form of A definitely has some stuff columns, so the system has a non-trivial solution
(Proposition 2.34). So the set is linearly dependent. □

B. Bases

We have now learnt the concepts of spanning set and of a linearly independent set. Putting them
together gives one of the most important concepts of Linear Algebra.

Definition 5.8: A basis in a vector space V is a set of vectors that is

˛ linearly independent and
˛ spans V .

Note that the singular is basis, not base. A “base” is not a term that has a special definition in
Linear Algebra. The plural of basis is bases, said with a long ee. So we have one basis and many
“basees”.
A good way to think about a basis is as a coordinate system for a vector space. The first condition
tells us that there is no inter-reelation between the basis vectors, and the second tell us that we
have enough basis vectors to give coordinates for every vector in V .

Examples 5.9: (Bases)
Since we have already seen examples of spanning sets and examples of linearly independent sets,
we can put things together.

a) In Rn, the set of standard unit vectors te1, e2, . . . , enu is a basis: we call it the standard basis
of Rn.

b) In R2, the set

#

v1 “

˜

1

1

¸

, v2 “

˜

1

´1

¸+

is a basis:

˛ We have seen that this set is linearly independent.
˛ It also spans R2:

˜

x

y

¸

“
x ` y

2

˜

1

1

¸

`
x ´ y

2

˜

1

´1

¸

c) The monomials t1, x, x2, . . . , xnu are a basis of Pn. We call this the standard basis of Pn.

Exercise 5.10: Prove that the following are bases of the given vector space.

a) tv1 “ p 1
1 q, v2 “ p 1

0 qu in R2.
b) tw1 “ p 1

2 q, w2 “ p 1
1 qu in R2.
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c)

$

’

&

’

%

v1 “

¨

˚

˝

1

1

0

˛

‹

‚

, v2 “

¨

˚

˝

´1

1

0

˛

‹

‚

, v3 “

¨

˚

˝

1

1

1

˛

‹

‚

,

/

.

/

-

in R3. (See earlier examples.)

d)

$

’

&

’

%

v1 “

¨

˚

˝

1

2

1

˛

‹

‚

, v2 “

¨

˚

˝

2

9

0

˛

‹

‚

, v3 “

¨

˚

˝

3

3

4

˛

‹

‚

,

/

.

/

-

in R3.

e) The set of matrices

#

E11 “

˜

1 0

0 0

¸

, E12 “

˜

0 1

0 0

¸

, E21 “

˜

0 0

1 0

¸

, E22 “

˜

0 0

0 1

¸+

in

M2,2.
f) More generally, let Eij be the mˆn matrix with zeros everywhere, except a 1 in the i, jth entry.

Show that E11, E12, . . . , E1n, E21, E22, . . . , E2n, E31, . . . , Em1, . . . , Emn form a basis of Mm,n.

You see that

a vector space can have several different bases.

We will learn more about bases, and later find a way of determining especially good bases for a
given situation.
In all our examples so far, we’ve had a finite set being a basis of a vector space. However, this is
not always possible.

Proposition 5.11: The vector space P of all polynomials has no finite spanning set.

Proof. Suppose we have a finite spanning set. Then let k be the maximum degree of all the
polynomials in this spanning set. Then the polynomial xk`1 P P cannot possibly be written as a
linear combination of the spanning set, because we can’t create something of larger degree. So the
set does not span P after all. □

Some of our results only work for vector spaces which have a finite basis.

Definition 5.12: A vector space V is said to be finite-dimensional if it has a finite spanning
set. If V has no finite spanning set, we say it is infinite-dimensional.

You see that we have defined something to do with dimensions without yet knowing what dimension
means formally. We need a little bit more before we can properly define dimension, other than
saying that something is finite-dimensional or not.

C. Coordinates Relative to a Basis

Let’s have a little summary:

Let V be a (real) vector space. A set tv1, v2, . . . , vnu Ă V of vectors in V

˛ is linearly independent if λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λnvn “ 0 for λi P R implies λi “ 0
for all i;

˛ spans V if very vector in V can be written as some linear combination of the vi;
˛ is a basis of V if it is linearly independent and spans V .

We said that we can think of a basis as something like a coordinate system. Let’s make this more
precise.

Theorem 5.13: (Uniqueness of basis representation)
If S “ tv1, . . . , vnu is a basis for a vector space V , then every vector v P V can be expressed
in exactly one way as a linear combination of S.
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Proof. As S is a basis, it spans V . So given any v P V there exist x1, . . . , xn P R with

v “ x1v1 ` . . . ` xnvn .

Assume that for y1, . . . , yn P R we have

v “ y1v1 ` . . . ` ynvn .

i.e. there is some other linear combination which gives v.
We need to show that x1 “ y1, . . . , xn “ yn, i.e. that they are actually the same linear combination.
Subtracting one from the other we get

0 “ px1 ´ y1qv1 ` . . . ` pxn ´ ynqvn .

Since S is linearly independent this gives x1 ´ y1 “ . . . “ xn ´ yn “ 0 which shows the claim. □

You can think of it this way:

˛ A basis spans V ñ every v P V can be written as a linear combination of basis in at least
one way.

˛ A basis is linearly independent ñ every v P V can be written as a linear combination it
at most one way.

Thus, given a basis S “ tv1, . . . , vnu of a vector space V , we have a unique representation of every
vector in V by a vector in Rn.

Definition 5.14: If S “ tv1, . . . , vnu is a basis for a vector space V and v “ x1v1 `¨ ¨ ¨`xnvn,
then the scalars x1, . . . , xn are called the coordinates of v relative to the basis S. The vector

rvsS “

¨

˚

˚

˝

x1

...

xn

˛

‹

‹

‚

is called the coordinate vector of v relative to S.

Put differently, there is a one-to-one map from V to Rn, assigning to each vector in V a unique
vector in Rn.

Example 5.15: Let V “ R2 and let e1 “

˜

1

0

¸

, e2 “

˜

0

1

¸

be the standard basis E. Then the

coordinate vector of v “ x1 ¨ e1 ` x2 ¨ e2 is

rvsE “

˜

x1

x2

¸

Now let B be the basis consisting of v1 “

˜

1

1

¸

and v2 “

˜

1

0

¸

. Then

˜

x

y

¸

“ y

˜

1

1

¸

` px ´ yq

˜

1

0

¸

,

so the coordinate vector of v “

˜

x

y

¸

with respect to B is

rvsB “

˜

y

x ´ y

¸

.

Exercise: Find the coordinate vector of v with respect to the basis S̃ “

#˜

1

1

¸

,

˜

1

´1

¸+

.
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So how do we find these coefficients to make a coordinate vector? We learnt how to do this in
“Finding linear combinations”, Corollary 4.31.

Finding coordinate vector
Given a basis B “ tv1, v2, . . . , vnu of a vector space V , we find the coordinate vector rvsB of
a vector v P V by solving the linear system

λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λnvn “ v.

If V “ Rn, then:

˛ Put the basis vectors v1, . . . , vn next to each other into a matrix A.
˛ Solve the system Ax “ v for the given vector v, which may be a particular vector,

or a general v “

¨

˚

˚

˝

x1

...

xn

˛

‹

‹

‚

.

If V is not Rn, you have to use the methods mentioned earlier to set up your linear system to
solve. In all cases:

˛ The solution of this sytem gives the coefficients λ1, λ2, . . . , λn.

˛ Then rvsB “

¨

˚

˚

˚

˚

˝

λ1

λ2

...

λn

˛

‹

‹

‹

‹

‚

.

Exercise 5.16: Find the coordinate vector for the polynomial

ppxq “ a0 ` a1x ` . . . ` anx
n

with respect to the standard basis of Pn.

Exercise 5.17: Let v, w P V , λ, µ P R and v1, v2, . . . , vn be a basis B of V . Show that

rλv ` µwsB “ λrvsB ` µrwsB .

In words: the coordinate vector of a linear combination is the linear combination of the coordinate
vectors.

D. Linear Independence and Bases: Study guide

Concept review.

˛ Linearly indepdendent set, linearly dependent set.
˛ Intuition about sets of 1, 2, 3 vectors being linearly independent.
˛ Sets of more than n vectors in Rn.
˛ Basis of a vector space.
˛ Finite-dimensional vector space.
˛ Uniqueness of basis representation.
˛ Coordinate vectors.

Skills.

˛ Determine whether a set is linearly independent.
˛ Determine whether a set is a basis.
˛ Find coordinate vector of some vector with respect to some basis.
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CHAPTER 6

Bases and Dimension

The results in this chapter are very crucial to the understanding of Linear Algebra, and much of
the theory relies on them.
We are interested in the relationship of linearly indepenent sets, spanning sets and bases, their
sizes, and if we can turn one into another in certain circumstances. We need to understand these
relationships in order to be able to properly define dimension, which we know intuitively as “the
degrees of freedom”.

A. Dimension

First notice the following:
We showed in the previous chapter that the standard basis of Rn has n vectors. So the standard
basis for R3 has three vectors, the standard basis for R2 has two vectors, and the standard basis for
R1 “ R has one vector. Since we think of space as three dimensional, a plane as two dimensional,
and a line as one dimensional, there seems to be a link between the number of vectors in a basis
and the dimension of a vector space. We will develop this idea in this section.

Proposition 6.1: (Bases of one space have the same size.)
Let V be a finite-dimensional vector space, and let S “ tv1, . . . , vnu be any basis.

(i) If a set has more than n vectors, then it is linearly dependent.
(ii) If a set has fewer than n vectors, then it does not span V .

Proof. (i) Let S̃ “ tw1, . . . , wku, k ą n. Since S is a basis, we can represent each vector

wi by its coordinate vector rwisS . To show that S̃ is linearly dependent, consider

λ1w1 ` ¨ ¨ ¨ ` λkwk “ 0.

Using the coordinate vectors with respect to S, this is equivalent to

λ1rw1sS ` ¨ ¨ ¨ ` λkrwksS “ 0 .

But rw1sS , . . . , rwksS are k vectors in Rn with k ą n, therefore by Proposition 5.7 we have
too many vectors, and we know that trw1sS , . . . , rwksSu is linearly dependent. So there are
λ1, . . . , λk not all zero, such that

λ1w1 ` ¨ ¨ ¨ ` λkwk “ 0 .

Therefore, S̃ is linearly dependent.
Summary: We turn the vectors wi into coordinate vectors so that we can use knowledge

from Rn.
(ii) Let S̃ “ tw1, . . . , wmu, m ă n. If we assume SpanS̃ “ V , we can represent each vector vi P S

as a linear combination of S̃, i.e.,

v1 “ a11w1 ` ¨ ¨ ¨ ` am1wm

...
...

vn “ a1nw1 ` ¨ ¨ ¨ ` amnwm
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Consider the equation λ1v1 ` ¨ ¨ ¨ ` λnvn “ 0. Substituting the expresssions fo vi into this
equation, and reordering we have

pλ1a11 ` ¨ ¨ ¨ ` λna1nqw1 ` ¨ ¨ ¨ ` pλ1am1 ` ¨ ¨ ¨ ` λnamnqwm “ 0 .

Let’s call it
µ1w1 ` ¨ ¨ ¨ ` µmwm “ 0,

i.e. λ1a11 ` ¨ ¨ ¨ ` λna1n “ µ1 and so on. Now consider the homogeneous linear system

λ1a11 ` ¨ ¨ ¨ ` λna1n “ 0

...
...

λ1am1 ` ¨ ¨ ¨ ` λnamn “ 0

This is a homogeneous linear system with n unknowns and m equations where n ą m. By
Proposition 2.34, as this system has more unknowns than equations, there are non-trivial
solutions λ1, . . . , λn to this equation. But then the coefficients µi in the equation

µ1w1 ` ¨ ¨ ¨ ` µmwm “ 0

all vanish (with some non-zero λi), so if we rearrange it back to

λ1v1 ` ¨ ¨ ¨ ` λnvn “ 0

we see that this has a non-trivial solution. This contradicts our assumption that S was a
basis: in particular, S is linearly independent. □

Summary: Assume that S̃ spans V , then show that this implies that S is linearly de-
pendent. Contradiction. So S̃ does not span V .

Therefore, any basis of a vector space must have the same number of vectors.

Definition 6.2: The dimension of a finite-dimensional vector space V is denoted by dimpV q

or dimV and is defined to be the number of vectors in a basis for V . In addition, the zero
vector space is defined to have dimension zero.

Example 6.3: dimRn “ n, dimPn “ n ` 1, dimMmn “ mn.

Example 6.4: If S “ tv1, . . . , vku is linearly independent, then S is a basis for SpanpSq. This
implies that dimSpanpSq “ k.
In words: the dimension of the space spanned by a linearly independent set of vectors is equal to
the number of vectors in that set.
For example:

˛ v1 “

´

1
2
3

¯

in R3 is the basis of the one-dimensional subspace Spanpv1q “ xv1y.

˛ v1 “

ˆ

1
1
1
1

˙

, v2 “

ˆ

1
2
3
4

˙

in R4 are the basis of the two-dimensional subspace W “ xv1, v2y

they span.

˛ v1 “

ˆ

1
1
1
1

˙

, v2 “

ˆ

1
2
3
4

˙

, v3 “

ˆ

2
3
4
5

˙

are not linearly independent (as v3 “ v1 `v2). We have

xv1, v2, v3y “ xv1, v2y “ W , but v1, v2, v3 do not form a basis of W . Any two of them do,
so v1, v2 form a basis of W , and v1, v3 also form a basis of W , and v2, v3 also.

Example 6.5: It is sometimes useful to think of dimension as “degrees of freedom” or “how many
numbers can I choose till a vector of that vector space is determined”. For example:
The vector space of symmetric n ˆ n matrices has dimension n ` 1

2 pn2 ´ nq “ 1
2 pn2 ` nq. We can

see this in different ways:

˛ We can choose all the entries on the diagonal, that is n entries; then of the remaining
n2 ´ n entries, we can choose half, because that determines the other half (since the
matrix is symmetric).
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˛ OR: Let’s say we choose the lower half of the matrix (including the diagonal). So in the
first row, we can choose 1 entry, in the second row we choose 2 entries, in the third row 3
entries, etc., up to n entries in row n. So we have chosen 1 ` 2 ` 3 ` ¨ ¨ ¨ ` n “ 1

2npn ` 1q

entries.

That is a good way to think of it. How do we prove that this is really correct, in terms of the
definition of dimension as the size of a basis? We have to give some basis of the symmetric matrices.
Essentially, for each entry we are allowed to choose, we can make a basis vector (or matrix in this
case).
For symmetric 2 ˆ 2 matrices, a nice basis is

E1 “

˜

1 0

0 0

¸

, E2 “

˜

0 0

0 1

¸

, S12 “

˜

0 1

1 0

¸

.

For 4 ˆ 4 matrices, we can give

E1 “

¨

˚

˚

˚

˝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

, E2 “

¨

˚

˚

˚

˝

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

, E3 “

¨

˚

˚

˚

˝

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

˛

‹

‹

‹

‚

, E4 “

¨

˚

˚

˚

˝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

˛

‹

‹

‹

‚

,

S12 “

¨

˚

˚

˚

˝

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

, S13 “

¨

˚

˚

˚

˝

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

˛

‹

‹

‹

‚

, S14 “

¨

˚

˚

˚

˝

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

˛

‹

‹

‹

‚

,

S23 “

¨

˚

˚

˚

˝

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

˛

‹

‹

‹

‚

, S24 “

¨

˚

˚

˚

˝

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

˛

‹

‹

‹

‚

, S34 “

¨

˚

˚

˚

˝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

˛

‹

‹

‹

‚

Exercise: Write down a basis for the 3 ˆ 3 symmetric matrices.

You can use similar ideas to find the basis of the null space of a matrix (or the solution space of a
homogeneous linear system):

Examples 6.6: ˛ Let A “

¨

˚

˝

1 5 3

2 7 9

1 2 6

˛

‹

‚

. We want to find a basis for NullA, which is the

set of solutions to Ax “ 0.
We know how to solve this system and write down the set of solutions:
¨

˚

˝

1 5 3

2 7 9

1 2 6

˛

‹

‚

ÝÑ

¨

˚

˝

1 5 3

0 ´3 3

0 ´3 3

˛

‹

‚

ÝÑ

¨

˚

˝

1 5 3

0 1 ´1

0 0 0

˛

‹

‚

ÝÑ

¨

˚

˝

1 0 8

0 1 ´1

0 0 0

˛

‹

‚

So NullA “

$

’

&

’

%

t

¨

˚

˝

´8

1

1

˛

‹

‚

,

/

.

/

-

.

We have one free variable in the solution, so we have “one degree of freedom”. We

can see that NullA “

C

¨

˚

˝

´8

1

1

˛

‹

‚

G

, and as this is a set of one non-zero vector, it is linearly

independent. So

¨

˚

˝

´8

1

1

˛

‹

‚

is a basis for NullA. So dimpNullAq “ 1.
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˛ Let A “

¨

˚

˝

1 4 3

´1 ´4 ´3

2 8 6

˛

‹

‚

. This matrix has reduced row echelon form

¨

˚

˝

1 4 3

0 0 0

0 0 0

˛

‹

‚

, so

NullA “

$

’

&

’

%

s

¨

˚

˝

´4

1

0

˛

‹

‚

` t

¨

˚

˝

´3

0

1

˛

‹

‚

,

/

.

/

-

“

C

¨

˚

˝

´4

1

0

˛

‹

‚

,

¨

˚

˝

´3

0

1

˛

‹

‚

G

.

Our intuition is that we have “2 degrees of freedom”, so these two vectors should form a
basis of NullA. How can we be sure?

Clearly they span NullA, so we just have to show they are linearly independent. The
system

λ1

¨

˚

˝

´4

1

0

˛

‹

‚

` λ2

¨

˚

˝

´3

0

1

˛

‹

‚

“

¨

˚

˝

0

0

0

˛

‹

‚

has only solution λ1 “ λ2 “ 0, which we can see from the second and third rows.
So these two vectors form a basis for NullA, and dimpNullAq “ 2.
It will always happen like this when we have two free variables: if say the second

and third variable have “stuff columns”, then we can choose them independently of each

other. That’s why it is so useful to separate the solution out as s

¨

˚

˝

´4

1

0

˛

‹

‚

` t

¨

˚

˝

´3

0

1

˛

‹

‚

rather

than write it all together as

¨

˚

˝

´4s ´ 3t

s

t

˛

‹

‚

.

So we see that

dimpNullpAqq “ number of stuff columns in reduced REF of A.

We will talk more about bases and dimension of subspaces later in the chapter.
We can also build new vector spaces by pairing given vector spaces together:

Definition 6.7: Given vector spaces V and W , the cartesian product (also called vector
space product) of V and W is the set of pairs of vectors from V and W , with vector addition
and scalar multiplication defined entry-wise:

V ˆ W “ tpv, wq | v P V,w P W u,

with pv1, w1q ` pv2, w2q “ pv1 ` v2, w1 ` w2q and λpv, wq “ pλv, λwq.

Examples 6.8: ˛ R ˆ R is the vector space R2 that we know: whether we write the pairs

horizontally as px, yq or as vertical vectors

˜

x

y

¸

does not matter that much.

˛ Rn ˆ Rm “ Rn`m. (We will see later what this ““” really means precisely.)

Proposition 6.9: (Dimension of vector space product)
Given vector spaces V and W , their cartesian product V ˆ W is again a vector space. If V
and W are finite-dimensional, then

dimpV ˆ W q “ dimV ` dimW.
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Proof. Exercise: Prove that V ˆW with the given addition and scalar multiplication satisfies
the vector space axioms. (You cannot use the subspace ones: it is not contained in a larger vector
space, but an entirely new one.)
Let v1, . . . , vn be a basis of V and w1, . . . , wm a basis of W . We show that

pv1, 0q, . . . , pvn, 0q, p0, w1q, . . . , p0, wmq

is a basis for V ˆ W . (These two sentences are a summary of the proof.)
First we show these vectors span the product: given pv, wq P V ˆ W , we have v P V , and so
v “ λ1v1 ` ¨ ¨ ¨ ` λnvn for some λi P R, because the vi are a basis of V . Similarly w P W and
w “ µ1w1 ` ¨ ¨ ¨ ` µmwm for some µi P R. Then

pv, wq “ pλ1v1 ` ¨ ¨ ¨ ` λnvn, µ1w1 ` ¨ ¨ ¨ ` µmwmq

“ pλ1v1, 0q ` ¨ ¨ ¨ ` pλnvn, 0q ` p0, µ1w1q ` ¨ ¨ ¨ ` p0, µmwmq

“ λ1pv1, 0q ` ¨ ¨ ¨ ` λnpvn, 0q ` µ1p0, w1q ` ¨ ¨ ¨ ` µmp0, wmq,

so pv, wq is a linear combination of the given vectors.
Now we show the vectors are linearly independent: consider

λ1pv1, 0q ` ¨ ¨ ¨ ` λnpvn, 0q ` µ1p0, w1q ` ¨ ¨ ¨ ` µmp0, wmq “ 0.

Then, using the same steps as above but backwards, we get

pλ1v1 ` ¨ ¨ ¨ ` λnvn, µ1w1 ` ¨ ¨ ¨ ` µmwmq “ p0, 0q,

which gives

λ1v1 ` ¨ ¨ ¨ ` λnvn “ 0

µ1w1 ` ¨ ¨ ¨ ` µmwm “ 0

separately. As v1, . . . , vn are a basis of V , we have λi “ 0 for all i, and similarly µi “ 0 for all i.
So the set

pv1, 0q, . . . , pvn, 0q, p0, w1q, . . . , p0, wmq

is linearly independent.
So as the set spans V ˆ W and is linearly independent, it is a basis for V ˆ W . Therefore
dimpV ˆ W q “ n ` m, the size of the basis, and so

dimpV ˆ W q “ dimV ` dimW. □

Remark 6.10: This shows how you can build up the standard basis of Rn step by step from the
basis 1 of R, by repeatedly taking such cartesian products.

B. Plus/Minus Theorem

Next, we consider a result which allows us to enlarge linearly independent sets and reduce span-
ning sets. The consequences of this result are very important for most of what we continue to
do.

Theorem 6.11: (Plus/Minus Theorem)
Let S be a non-empty finite set of vectors in a vector space V .

(i) If S is linearly independent and v P V is not in the span of S, then S Y tvu is still
linearly independent.

(ii) If S spans V , and v P S can be expressed as a linear combination of other vectors in S,
then Sztvu still spans V .

Proof. (i) Let S “ tv1, v2, . . . , vku. We want to show that S Y tvu is linearly independent.
Consider

λ1v1 ` ¨ ¨ ¨λkvk ` λv “ 0.
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If we have λ ‰ 0, then v “ ´ 1
λ pλ1v1 ` ¨ ¨ ¨λkvkq. But we know v is not in the span of S, so

we must have λ “ 0. So with λ “ 0, the linear combination reduces to

λ1v1 ` ¨ ¨ ¨λkvk “ 0.

But S is linearly independent, so all λi “ 0. So S Y tvu is linearly independent.
Summary: look at v and S separately when showing linear independence.

(ii) We know S “ tv1, v2, . . . , vku spans V , and one of the vectors in S can be expressed as a
linear combination of the others. Without loss of generality (meaning we can reorder them
if necessary), we have vk “ λ1v1 ` ¨ ¨ ¨ ` λk´1vk´1. We want to show that tv1, . . . , vk´1u still
spans. Given any w P S, as S spans, there are some µi P F such that

w “ µ1v1 ` ¨ ¨ ¨ ` µk´1vk´1 ` µkvk.

Then we can substitute for vk and get

w “ µ1v1 ` ¨ ¨ ¨ ` µk´1vk´1 ` µkpλ1v1 ` ¨ ¨ ¨ ` λk´1vk´1q

“ pµ1 ` µkλ1qv1 ` ¨ ¨ ¨ ` pµk´1 ` µkλk´1qvk´1

so w can be written as a linear combitation of v1, . . . , vk´1. As this is possible for any w,
tv1, . . . , vk´1u “ Sztvku still spans S. □

Summary: replace vk by its linear combination.

We will need this theorem for some other crucial results, but here is also a smaller example of how
it can be used.

Examples 6.12: a) Given the vectors v1 “

´

1
1
0

¯

, v2 “

´

1
´1
0

¯

and v3 “

´

2
3
1

¯

, we can see that

˛ v1 and v2 are linearly independent: they are just two vectors and they are not parallel.
˛ v1 and v2 have 0 in the third entry, so they are in the x, y-plane.
˛ v3 is not in the span of tv1, v2u: it has a non-zero entry in the third place.

So using the Plus/Minus Theorem (Theorem 6.11), we can see that tv1, v2, v3u are linearly
independent.

b) We can use the theorem similarly for the polynomials p1 “ 1 ´ x2, p2 “ 2 ´ x2, p3 “ x3. Can
you explain why p3 is not in the span of tp1, p2u?

c) If v1, v2, v3, v4 span a vector space V and v3 “ v1 ´ 4v2 ` 3v4, or some other linear combination
like this, then we can delete v3, and v1, v2, v4 still span all of V .

d) If v1, v2, v3, v4 span a vector space V and v2 “ 2v4, then we can delete either v2 or v4 (but not
both!), so v1, v3, v4 span V , and also v1, v2, v3 span V .

One of the nice consequences of the Plus/Minus Theorem is that, when a potential basis has the
correct size, i.e. the same size as the dimension of the vector space, we can get away with checking
only one of the two defining properties of a basis.

Proposition 6.13: (Check one get one free for bases)
Let V be a vector space of dimension n. Then

(i) any linearly independent set of size n automatically spans V , and
(ii) any spanning set of size n is automatically linearly independent.

Proof. Let tv1, . . . , vnu be linearly independent. Suppose it does not span V : then there is
some v P V which is not in the span of tv1, . . . , vnu. So by the Plus/Minus Theorem (Theorem 6.11),
tv1, . . . , vn, vu is still linearly independent. But this is a set of more than n vectors, so can’t be
linearly independent (see Theorem 6.1). So in fact tv1, . . . , vnu spans V .

Suppose tv1, . . . , vnu spans V but is linearly dependent. Then

λ1v1 ` . . . ` λnvn “ 0

with not all λi “ 0. Without loss of generality (meaning we can reorder if necessary), we have
λn ‰ 0. But then vn can be written as a linear combitation of v1, . . . , vn´1, so by the Plus/Minus
Theorem (Theorem 6.11), the set tv1, . . . , vn´1u still spans V . But this set has fewer than n vectors,
so it cannot span V (see Theorem 6.1). So in fact tv1, . . . , vnu is linearly independent. □
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So when we know (through some other way) that V has dimension n, and we have a set of n
vectors that might be a basis, it is enough to check one of linearly independent and spanning, we
don’t have to do both.

Examples 6.14: (a) We can see without any calculation that

v1 “

˜

´3

7

¸

, v2 “

˜

5

5

¸

form a basis of R2. These two vectors are clearly not parallel, so they are linearly independent,
and R2 has dimension 2, so any linearly independent set of 2 vectors forms a basis.

(b) We can see without any calculation that

v1 “

¨

˚

˝

2

0

´1

˛

‹

‚

, v2 “

¨

˚

˝

4

0

7

˛

‹

‚

, v3 “

¨

˚

˝

´1

1

4

˛

‹

‚

form a basis of R3. The first two vectors lie in the x, z-plane (can you explain why?) and are
clearly not parallel. The last vector v3 is not in the x, z-plane, so it is not in the span of tv1, v2u.
So by the Plus/Minus Theorem (Theorem 6.11), the set tv1, v2, v3u is linearly independent. So
as R3 has dimension 3, it is automatically a basis.

(c) Let Pn be the space of polynomials of degree at most n. We know that 1, x, x2, . . . , xn is a
basis of Pn, see Example 5.9 c. So dimPn “ n ` 1. So to check that

p0 “ 1, p1 “ x ` 1, p2 “ x2 ` x ` 1, . . . , pn “ xn ` xn´1 ` ¨ ¨ ¨ ` x ` 1

is a basis of Pn, it is enough to check one of linearly independent and spanning.
Exercise Check that p0, . . . , pn is a basis of Pn. (This is 6.13c) in the workbook.)

(d) (This is 6.12c) from the workbook.) Let e1, e2, . . . , en be the standard basis of Rn, and consider

v1 “ e1 ` e2, v2 “ e2 ` e3, . . . , vk “ ek ` ek`1, . . . , vn “ en ` e1.

We will check in lectures whether these form a basis of Rn or not. The answer will depend on
whether n is odd or even. When n is even we will show that there is some dependence relation.
When n is odd, we will show they form a basis by showing that they span. The easiest way
to show that these particular vectors span is to give each standard basis vector as a linear
combination of one of these. As soon as we can get all the standard basis vectors, we can also
get any other vector.

The next result is going to be used a lot throughout the course.

Theorem 6.15: (Extend to a basis)
Let V be a finite-dimensional vector space. Then

(i) any linearly independent set in V can be extended to a basis of V , and
(ii) any spanning set of V contains a basis of V .

Proof. (i) Suppose tv1, . . . , vku is a linearly independent set in V with k ă n “ dimV . We
want to show that we can add vectors to this set to get a basis of V .

As a set of fewer than n vectors cannot span, there is some vk`1 P V which is not in
the span of tv1, . . . , vku. So by the Plus/Minus Theorem (Theorem 6.11), tv1, . . . , vk, vk`1u

is still linearly independent. If k ` 1 “ n, we have a linearly independent set of n vectors, so
it is a basis (by Proposition 6.13). If k ` 1 ă n, then tv1, . . . , vk`1u still cannot span V , so
there is some vk`2 not in the span, so tv1, . . . , vk`1, vk`2u is still linearly independent. We
continue this way until we have a set of size n which is still linearly independent, and so a
basis of V .

(ii) Let tv1, . . . , vmu be a spanning set, with m ą n. Then the set cannot be linearly independent,
so we have

λ1v1 ` . . . ` λmvm “ 0
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with not all λi “ 0; wlog (without loss of generality) λm ‰ 0. So vm can be written as
a linear combination of the other vectors, so by the Plus/Minus Theorem (Theorem 6.11),
tv1, . . . , vm´1u still spans V . If m ´ 1 “ n, this set is automatically a basis (by Proposi-
tion 6.13: it has the right size). If m ´ 1 ą n, we can repeat the previous step and remove
another vector from the set to still have a spanning set tv1, . . . , vm´2u. We continue like this
until we are left with a spanning set of n vectors, which is automatically a basis. □

Examples 6.16: (a) Given the linearly independent vectors

v1 “

¨

˚

˝

0

3

1

˛

‹

‚

, v2 “

¨

˚

˝

0

2

6

˛

‹

‚

,

how can we extend them to a basis of R3? We can see that v1, v2 cannot span any vector which
has a non-zero entry in the first coordinate. So adding

v3 “

¨

˚

˝

1

0

0

˛

‹

‚

extends v1, v2 to a basis v1, v2, v3 of R3. This added vector is not unique! We can choose any

vector that is not in the span of the first two, for example v3 “

´

4
3

´5

¯

, or anything else that

does not have a 0 in the first entry. It is however useful to keep it simple and look, if possible,
for standard basis vectors.

(b) Let’s try to find which standard basis vectors we can add to the two vectors below to extend
to a basis of R4.

v1 “

¨

˚

˚

˚

˝

1

3

6

´3

˛

‹

‹

‹

‚

, v2 “

¨

˚

˚

˚

˝

´1

´2

´4

2

˛

‹

‹

‹

‚

.

The vectors are not as nice as in the previous example, but we can use column operations to
turn them into vectors which span the same subspace but are nicer.

Performing elementary column operations does not change the column space of a matrix.

¨

˚

˚

˚

˝

1 ´1

3 ´2

6 ´4

´3 2

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 0

3 1

6 2

´3 ´1

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 0

0 1

0 2

0 ´1

˛

‹

‹

‹

‚

So we see that e1 is in the span of those two vectors, so we definitely don’t want to add that
one. We know we need to add two more vectors to get a basis for R4. We can see that neither
e2, e3 or e4 are in the span of our two vectors (because the column operations did not change
the span!!!!). So by the Plus/Minus Theorem we can add any one of them; let’s say we add
e2. We can now repeat the “make it easier through column operations” step:

¨

˚

˚

˚

˝

1 ´1 0

3 ´2 1

6 ´4 0

´3 2 0

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 0 0

3 1 1

6 2 0

´3 ´1 0

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 0 0

0 0 1

0 2 0

0 ´1 0

˛

‹

‹

‹

‚

From this we see that neither e3 nor e4 are in the span of those three vectors, so we can add
either of those to get a bigger linearly independent set.

In summary: we have found out by using column operations and the Plus/Minus Theorem
that

v1, v2, e2, e3

form a basis of R4.
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(c) Not lectured: an extra example for you to work through to help you understand. In the space
P3 of polynomials of degree at most 3, consider

p1 “ x ´ 1, p2 “ x ` 3.

We can see that this is a linearly independent set. How can we extend it to a basis of the
4-dimensional space P3? We can see that p1, p2 can’t combine to give a polynomial of degree
2, so we can add p3 “ x2. Then by the Plus/Minus Theorem, p1, p2, p3 are still linearly
independent. We now still can’t make polynomials of degree 3, so we add p4 “ x3, and then
p1, p2, p3, p4 is a basis of P3.

Again these choices are not unique. We can use any polynomial with some x2 term as the
second one, and any polynomial with some x3 term for the third one. Or we could even use
q3 “ x2 ` x3 for the first one and q4 “ x2 ´ x3 for the third one: x2 ` x3 is not in the span of
the first two, and then we have to find another vector that is not in the span of the first three.
Using the first three, we can only get a polynomial which has the same coefficient in front of
x2 and x3, so the q4 I suggested is not in the span of p1, p2, q3.

Exercise 6.17: Using the result “equal spans” (Prop. 4.27), explain why performing elementary
column operations on a matrix does not change the column space (= span of the column vectors).

Let’s write down the method we have seen in these examples:

Extending to a basis
Given some linearly independent set of vectors tv1, . . . , vku in a vector space V of dimension
n, we want to extend this set to a basis of V .

˛ If V “ Rn, we already have column vectors v1, . . . , vk, and we will want to add some
of the standard basis vectors e1, . . . , en.

˛ If V is not Rn, then pick a basis B of V (usually some nice one, like standard basis
of polynomials, etc) and write each of the vi as a coordinate vector: so now we can
treat them as vectors in Rn after all.

˛ Write all the vectors v1, . . . , vk next to each other as the columns of a matrix A.
˛ Perform elementary column operations on the matrix A, to get the columns into
as easy a form as possible. (The column version of echelon form, or reduced echelon
form.)

˛ You should now be able to see easily which of the standard basis vectors e1, . . . , en
are already in the span of v1, . . . , vk. So pick some ei which is not in the span, and
add it. (By Plus/Minus Theorem, these k ` 1 vectors are still linearly independent.)

˛ Add that vector to the end of the reduced version of matrix A, and reduce this bigger
matrix again (if possible). If possible, add another standard basis vector which is
not in the span of the given vectors.

˛ Continue like this until you have n vectors. (By Plus/Minus Theorem, these are still
linearly independent, and so by chogof for bases, they form a basis of V .)

Reducing to a basis or Finding basis for column space
Given some spanning set tv1, . . . , vlu in a vector space V of dimension n, we want to reduce
it to a basis of V .
(Or given a matrix A, we want to find a basis for the column space of A. For this start at the
fourth point.)

˛ If V “ Rn, we already have column vectors v1, . . . , vl.
˛ If V is not Rn, then pick a basis B of V (usually some nice one, like standard basis
of polynomials, etc) and write each of the vi as a coordinate vector: so now we can
treat them as vectors in Rn after all.

˛ Put all the vectors next to each other to form the columns of a matrix A.
˛ Perform elementary row operations on A (to solve the system Ax “ 0).
˛ Delete all columns of A that turn into stuff columns at the end.
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˛ The remaining columns are your basis. (Either of V , or of the column space of A,
depending on what you started with).

Exercise 6.18: In the calculations of getting A into reduced row echelon form, in every step
delete all the columns which at the end turn into stuff columns. Explain why the remaining
original columns of A are linearly independent. (C.f. Workbook Question 6.9)

This “reducing to a basis” also shows us the following:

Corollary 6.19: Every finite-dimensional vector space has a (finite) basis.

Proof. Let V be finite-dimensional, so it has a finite spanning set. Then this spanning set
contains a basis (by Theorem 6.15ii). Clearly this basis is a finite set. □

This result also allows us to look at subspaces more carefully.

C. Bases and dimension of subspaces

Proposition 6.20: (Dimensions of subspaces)
If W is a subspace of a finite-dimensional vector space V , then:

(i) W is finite-dimensional.
(ii) dimW ď dimV .
(iii) W “ V if and only if dimW “ dimV .

Proof. (i) As V is finite-dimensional, it has some finite basis. Let’s say the basis has n
elements, so dimV “ n.

Now consider W . We want to show that it has a finite spanning set. If W “ 0, then it
is finite-dimensional as t0u is a spanning set. So assume W ‰ 0. Take some w1 ‰ 0 P W . If
xw1y “ W (i.e. w1 spans all of W ), then we have found a finite spanning set, so we are done.

If xw1y ‰ W , then there is some w2 P W which is not in this span: w2 R xw1y. Then by
the Plus/Minus Theorem (Theorem 6.11), tw1, w2u is linearly independent. If xw1, w2y “ W ,
we are done. Otherwise we can find w3 P W , w3 R xw1, w2y, and so on.

As the set we build always stays linearly independent (by the Plus/Minus Theorem), it
cannot get bigger than n elements, because any set of more than n vectors in V must be
linearly dependent (Prop. 6.1). So this process must stop, giving a finite spanning set for W .

(ii) Exercise. Note that a basis of W is a linearly independent set in V .
(iii) If W “ V , then clearly dimW “ dimV .

Conversely, suppose dimW “ dimV “ n and W ď V . Suppose there is some v P V ,
v R W . Let w1, w2, . . . , wn be a basis for W (which exists, because W ď V and V finite-
dimensional, so W is finite-dimensional, so it has a finite basis). If v R W , then by Plus/Minus
Theorem (Theorem 6.11), w1, w2, . . . , wn, v is linearly independent in V . But this is a set of
n`1 linearly independent vectors in a space of dimension n, which is not possible (Prop. 6.1).
So in fact, there is no v P V which is not in W , so V “ W .

□

Careful! If W is not a subspace of V , then it is not true that dimW “ dimV implies W “ V . For
example, the space P2 of polynomials of degree at most 2 has dimension 3, but it is not the same
vector space as R3.

Now while we have dimW ď dimV , so we have a simple relation for the dimensions, we do have
to be a lot more careful about bases of subspaces.

Fact 6.21: (Bases of subspaces)
If v1, v2, . . . , vn is a basis B of V , and W ď V is a subspace of V , there is no reason to assume
that a subset of the basis B can be found to give a basis of W . For example:
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˛ Take the standard basis E “

#

e1 “

˜

1

0

¸

, e2 “

˜

0

1

¸+

of R2, and let W “

C˜

1

1

¸G

be

the subspace which is the line spanned by

˜

1

1

¸

. Then no subset of E which gives a basis

of W : any basis of W is a single vector of the form

˜

x

x

¸

. (For example

˜

1

1

¸

or

˜

2

2

¸

or

˜

´1

´1

¸

.)

˛ Let W be the space of symmetric 2ˆ 2 matrices, which is a subspace of V “ M2ˆ2. The
standard basis of M2ˆ2 is

E1 “

˜

1 0

0 0

¸

, E2 “

˜

0 0

0 1

¸

, E12 “

˜

0 1

0 0

¸

, E21 “

˜

0 0

1 0

¸

.

We saw above that W has a basis of size 3, so has dimension 3. But there are only two
symmmetric matrices in this standard basis of M2ˆ2, so there is no subset of 3 vectors
which could give us a basis for W .

How do we get round this?

When working with subspaces W ď V and bases, we always start with a basis BW of the
subspace. This is a linearly independent set in V , so we can extend it to a basis BV of V .
This way we get a basis of V which contains a basis of the subspace.
But we always have to start with a basis for the smaller space for this to work!

We know that given two subspaces U,W ď V , their intersection U X W “ tv P V | v P U and v P

W u and their sum U `W “ tu`w | u P U,w P W u are again vector spaces (Propositions 4.16 and
4.18). Using this trick of extending a basis for the smaller space, we can now prove a relationship
of their dimensions.

Proposition 6.22: (Dimension of sum of subspaces)
Let V be a finite-dimensional vector space, and U,W ď V two subspaces. Then

dimpU ` W q “ dimU ` dimW ´ dimpU X W q.

Proof. Suppose dimU “ k and dimW “ l, and dimU X W “ m. So m ď k and m ď l,
as U X W is a subspace of both U and W (see Theorem 6.20). Let u1, . . . , um be a basis BUXW

of U X W (we start with a basis of the very smallest space), and extend it to a basis BU “

tu1, . . . , um, um`1, . . . , uku of U , and to a basis BW “ tu1, . . . , um, wm`1, . . . , wlu of W . If U X W
happens to be the zero vector space, then we don’t have any basis for U X W and just take bases
for U and W separately. The rest of the proof still makes sense for that case, i.e. when m “ 0.
We now show that BU YBW “ tu1, . . . , um, um`1, . . . , uk, wm`1, . . . , wku forms a basis for U `W .
These vectors span U ` W :
given u`w P U`W with u P U,w P W , then u “ λ1u1`¨ ¨ ¨`λmum`λm`1um`1`¨ ¨ ¨λkuk for some
λi P R, because BU is a basis of U , and similarly w “ µ1u1 ` ¨ ¨ ¨ `µmum `µm`1wm`1 ` ¨ ¨ ¨ `µlwl

for some µi P R. So

u ` w “ pλ1 ` µ1qu1 ` ¨ ¨ ¨ ` pλm ` µmqum ` λm`1um`1 ` ¨ ¨ ¨ ` λkuk ` µm`1wm`1 ` ¨ ¨ ¨ ` µlwl.

To show the vectors are linearly indepdent, consider

λ1u1 ` ¨ ¨ ¨ ` λmum ` λm`1um`1 ` ¨ ¨ ¨ ` λkuk ` µm`1wm`1 ` ¨ ¨ ¨ ` µlwl “ 0.

We can rearrange this to get

λ1u1 ` ¨ ¨ ¨ ` λmum ` λm`1um`1 ` ¨ ¨ ¨ ` λkuk “ ´µm`1wm`1 ´ ¨ ¨ ¨ ´ µlwl.

Let’s call this vector v. The LHS expression shows that v P U , and the RHS shows that v P W . So
v P UXW . So, as BUXW is a basis of UXW , there are some νi P R such that v “ ν1u1`¨ ¨ ¨`νmum.
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Then, using the RHS expression for v, we get

nu1u1 ` ¨ ¨ ¨ ` νmum “ ´µm`1wm`1 ´ ¨ ¨ ¨ ´ µlwl

ô nu1u1 ` ¨ ¨ ¨ ` νmum ` µm`1wm`1 ` ¨ ¨ ¨ ` µlwl “ 0.

But those vectors are the basis BW , so they are linearly independent, so νi “ 0 for all i and µj “ 0
for all j.
This implies v “ 0, so then using the LHS expresion for v, we get

λ1u1 ` ¨ ¨ ¨ ` λmum ` λm`1um`1 ` ¨ ¨ ¨ ` λkuk “ 0.

Those vectors are the basis BU , so they are linearly independent, so λi “ 0 for all i.
So we have shown that tu1, . . . , um, um`1, . . . , uk, wm`1, . . . , wku is a linearly independent set.
So as it is linearly independent and spans U ` W , it is a basis of U ` W .
Therefore dimpU ` W q “ k ` pl ´ mq, the size of the basis. This gives

dimpU ` W q “ dimU ` dimW ´ dimpU X W q

as required. □

So this means if we know the dimensions of U, W and U X W , we know the dimension of U ` W .
The proof also gives us a way to find nice bases for these spaces that work well together.
Sometimes it is easy to see what U X W is.

Examples 6.23: ˛ V “ R3, U “

C

¨

˚

˝

1

0

0

˛

‹

‚

,

¨

˚

˝

0

1

0

˛

‹

‚

G

, the x, y-plane, W “

C

¨

˚

˝

1

0

0

˛

‹

‚

,

¨

˚

˝

1

0

1

˛

‹

‚

G

.

So U X W “

C

¨

˚

˝

1

0

0

˛

‹

‚

G

. So

¨

˚

˝

1

0

0

˛

‹

‚

,

¨

˚

˝

0

1

0

˛

‹

‚

,

¨

˚

˝

1

0

1

˛

‹

‚

is a basis for U ` W “ R3.

˛ V “ R4, U “

C

¨

˚

˚

˚

˝

1

1

1

0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1

´1

0

0

˛

‹

‹

‹

‚

G

, W “

C

¨

˚

˚

˚

˝

1

1

1

0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1

1

0

0

˛

‹

‹

‹

‚

G

.

U X W has basis

¨

˚

˚

˚

˝

1

1

1

0

˛

‹

‹

‹

‚

. So U ` W has basis

¨

˚

˚

˚

˝

1

1

1

0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1

´1

0

0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1

1

0

0

˛

‹

‹

‹

‚

.

dimpU ` W q “ dimpUq ` dimpW q ´ dimpU X W q “ 2 ` 2 ´ 1 “ 3.
So U ` W is not all of R4. (We can see that the last entry is always 0.)

There is another situation when it is reasonably easy to work out what the intersection is:

Examples 6.24: Let V “ R3, and

U “

$

’

&

’

%

¨

˚

˝

x1

x2

x3

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1 ` x2 ` x3 “ 0

,

/

.

/

-

, W “

$

’

&

’

%

¨

˚

˝

x1

x2

x3

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1 ` 2x2 ` x3 “ 0

,

/

.

/

-

.

Here both U and W are given as a solution set to a linear system. So the vectors in U are all
vectors which satisfy the first equation, and the vectors in W are all vectors which satisfy the
second equation. So it is easy to see that the vectors in U X W are all vectors which satisfy both
equations. So we simply solve the linear system

x1 ` x2 ` x3 “ 0

x1 ` 2x2 ` x3 “ 0
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to find U X W . We get
˜

1 1 1

1 2 1

¸

ÝÑ

˜

1 1 1

0 1 0

¸

ÝÑ

˜

1 0 1

0 1 0

¸

so the set of solutions is U X W “

$

’

&

’

%

t

¨

˚

˝

´1

0

1

˛

‹

‚

,

/

.

/

-

. And so

¨

˚

˝

´1

0

1

˛

‹

‚

is a basis of U X W .

We can use the same technique when the subspaces are given as nullspaces of some matrix A, as
this can also be viewed as solutions to a linear system Ax “ 0.

Exercise 6.25: Write down bases of U and of W that contain this basis of U XW , and write down
a basis of U ` W .

But sometimes it is not so easy to see what the intersection is.

Example 6.26: Find a basis for the intersection of

U “

C

¨

˚

˝

1

1

0

˛

‹

‚

,

¨

˚

˝

1

0

2

˛

‹

‚

G

, W “

C

¨

˚

˝

2

1

0

˛

‹

‚

,

¨

˚

˝

0

0

2

˛

‹

‚

G

.

Let v P U X W . This gives us

v “

¨

˚

˝

λ1

λ1

0

˛

‹

‚

`

¨

˚

˝

λ2

0

2λ2

˛

‹

‚

“

¨

˚

˝

2µ1

µ1

0

˛

‹

‚

`

¨

˚

˝

0

0

2µ2

˛

‹

‚

.

The second row gives λ1 “ µ1, and the third row gives λ2 “ µ2. So now we have

v “

¨

˚

˝

λ1 ` λ2

λ1

2λ2

˛

‹

‚

“

¨

˚

˝

2λ1

λ1

2λ2

˛

‹

‚

.

Then the first row gives λ1 “ λ2. So

v “

¨

˚

˝

2λ1

λ1

2λ1

˛

‹

‚

“ λ1

¨

˚

˝

2

1

2

˛

‹

‚

So choosing λ1 “ 1 gives us the vector

¨

˚

˝

2

1

2

˛

‹

‚

which forms a basis for U X W .

So we can note down:

Finding a basis of an intersection
If U and W are given as solution set of linear systems (including a nullspace of a matrix):

˛ Put all equations of both linear systems together and solve the bigger linear system.
˛ The solutions of this bigger linear system is the intersection: find a basis like you do
when giving a basis of a nullspace.

If U and W are given as spans, or with bases:
Let U have basis u1, u2, . . . , uk and W have basis w1, w2, . . . , wl. Then

˛ Take v P U X W , so v “ λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λkvk “ µ1w1 ` ¨ ¨ ¨ ` µlwl.
˛ Solve the system λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λkvk ´ µ1w1 ´ ¨ ¨ ¨ ´ µlwl “ 0.
˛ Use the solution to this system to write down v, and find a basis.
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Example 6.27: Let V “ R4, U “

C

u1 “

¨

˚

˚

˚

˝

1

1

1

0

˛

‹

‹

‹

‚

, u2 “

¨

˚

˚

˚

˝

1

´1

0

0

˛

‹

‹

‹

‚

G

, W “

C

w1 “

¨

˚

˚

˚

˝

3

1

1

0

˛

‹

‹

‹

‚

, w2 “

¨

˚

˚

˚

˝

1

1

0

0

˛

‹

‹

‹

‚

G

.

Let v P U X W , so

v “ λ1

¨

˚

˚

˚

˝

1

1

1

0

˛

‹

‹

‹

‚

` λ2

¨

˚

˚

˚

˝

1

´1

0

0

˛

‹

‹

‹

‚

as v P U , and also

v “ µ1

¨

˚

˚

˚

˝

3

1

1

0

˛

‹

‹

‹

‚

` µ2

¨

˚

˚

˚

˝

1

1

0

0

˛

‹

‹

‹

‚

because v P W . So

v “

¨

˚

˚

˚

˝

λ1 ` λ2

λ1 ´ λ2

λ1

0

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

3µ1 ` µ2

µ1 ` µ2

µ1

0

˛

‹

‹

‹

‚

.

or
¨

˚

˚

˚

˝

λ1 ` λ2

λ1 ´ λ2

λ1

0

˛

‹

‹

‹

‚

´

¨

˚

˚

˚

˝

3µ1 ` µ2

µ1 ` µ2

µ1

0

˛

‹

‹

‹

‚

“ 0.

This gives us a system with 4 equations and 4 variables, which we can solve.
¨

˚

˚

˚

˝

1 1 ´3 ´1

1 ´1 ´1 ´1

1 0 ´1 0

0 0 0 0

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 1 ´3 ´1

0 ´2 2 0

0 ´1 2 1

0 0 0 0

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 1 ´3 ´1

0 1 ´1 0

0 0 1 1

0 0 0 0

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 1 0 2

0 1 0 1

0 0 1 1

0 0 0 0

˛

‹

‹

‹

‚

ÝÑ

¨

˚

˚

˚

˝

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 0

˛

‹

‹

‹

‚

So if we say µ2 “ t, then µ1 “ ´t, λ1 “ λ2 “ ´t. So our v is

v “

¨

˚

˚

˚

˝

´t ´ t

´t ´ p´tq

´t

0

˛

‹

‹

‹

‚

“ ´t

¨

˚

˚

˚

˝

2

0

1

0

˛

‹

‹

‹

‚

.

(If it happens to be a reasonably simple system where you can just find a solution directly from
looking at the two expressions for v, that’s ok.)

So v0 “

¨

˚

˚

˚

˝

2

0

1

0

˛

‹

‹

‹

‚

is a basis for U X W .

Now we have to extend this to a basis of U and a basis of W . We can use the Plus/Minus Theorem:
we know that u1 P U and u1 is not in the span of v0, so tv0, u1u is linearly independent, so it is a
basis of U (since dimU “ 2). Similarly tv0, w1u is a basis of W .
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(Note we could also choose tv0, u2u for U and/or tv0, w2u for W . We’ve already seen that “extend-
ing a basis” is not unique.)
So tv0, u1, w1u is a basis for U ` W , which has dimension 3.

We know how to go from a system of equations to a basis of the solution set (or from a matrix to
a basis of its nullspace), but is there an easy “algorithmic” way to go back the other way?

Proposition 6.28: (Subspace as solution set) Every subspace of Rn is the solution space
of some homogeneous linear system (i.e. the nullspace of some matrix).

Proof. Let U ď Rn have a basis u1, . . . , uk, i.e. dimpUq “ k. Form a matrix A with the
vectors ui as rows:

A “

¨

˚

˚

˚

˚

˝

Ð uT
1 Ñ

Ð uT
2 Ñ

...

Ð uT
k Ñ

˛

‹

‹

‹

‹

‚

As the ui are a basis of U , they are linearly independent. This means that the reduced row echelon
form of A has no zero rows, since a zero row occurs when one row is some linear combination of
other rows. So the reduced row echelon form of A has k leading 1s, so n ´ k stuff columns.
Therefore its nullspace W “ tx P Rn | Ax “ 0u has dimension n ´ k. Let w1, . . . , wn´k be a basis
of W , and make a matrix B with the wj as rows:

B “

¨

˚

˚

˚

˚

˝

Ð wT
1 Ñ

Ð wT
2 Ñ

...

Ð wT
n´k Ñ

˛

‹

‹

‹

‹

‚

By the same argument, the reduced row echelon form of B has n´k leading 1s, and k stuff columns.
So the nullspace ty P Rn | By “ 0u has dimension k. We will show that this nullspace of B is in
fact U , the subspace we started with.
We first show that U Ď ty P Rn | By “ 0u. Let u P U . Then as the ui form a basis of U , there are
λi such that u “ λ1u1`λ2u2`¨ ¨ ¨`λkuk. So if Bui “ 0 for all i, then Bu “ Bpλ1u1`¨ ¨ ¨`λkukq “

λ1Bu1 ` ¨ ¨ ¨ ` λkBuk “ 0 as well. So we only have to show that Bui “ 0 for any i.
Now Bui is a vector with the jth entry wT

j ui, i.e. row j of B times ui. But we know that

uT
i wj “ 0, because wj is in W , the nullspace of A, which has rows uT

i . But then also puT
i wjqT “ 0,

i.e. wT
j ui “ 0, so Bui “ 0. Written more compactly:

Bui “

¨

˚

˚

˚

˚

˝

wT
1 ui

wT
2 ui

...

wT
n´kui

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

puT
i w1qT

puT
i w2qT

...

puT
i wn´kqT

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

0T

0T

...

0T

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

0

0
...

0

˛

‹

‹

‹

‹

‚

So ui P ty P Rn | By “ 0u.
So we know that U Ď ty P Rn | By “ 0u. But we also know that dimpUq “ k “ dimpty P Rn | By “ 0uq.
So by Theorem 6.20(iii), we get U “ ty P Rn | By “ 0u, as required.
So U is the set of solutions of the homogeneous linear system By “ 0 (i.e. the nullspace of B). □

So if you want to, you can use this technique to turn a “subspace given as a span/with a basis”
into a “subspace given as a solution to a linear system”, and then use the first method for finding
a basis of an intersection.
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Exercise 6.29: Let V “ R4, U “

C

u1 “

¨

˚

˚

˚

˝

1

1

1

0

˛

‹

‹

‹

‚

, u2 “

¨

˚

˚

˚

˝

1

´1

0

0

˛

‹

‹

‹

‚

G

, W “

C

w1 “

¨

˚

˚

˚

˝

3

1

1

0

˛

‹

‹

‹

‚

, w2 “

¨

˚

˚

˚

˝

1

1

0

0

˛

‹

‹

‹

‚

G

,

as in the previous example.
Use the technique from Prop. 6.28 to write U and W as solution spaces of linear systems, and then
use the “linear systems” method to find a basis for U X W . Check that you get the same answer
as the example above.

Recall that If U,W ď V are two subspaces with intersection U XW “ 0 being just the zero vector,
then we call U ` W a direct sum and write U ‘ W .

Corollary 6.30: (Dimension of direct sum)

dimpU ‘ W q “ dimU ` dimW.

Proof. Recall that dim0 “ 0. □

Examples 6.31: ˛ V “ R3, U “ x-y-plane “

C

¨

˚

˝

1

0

0

˛

‹

‚

,

¨

˚

˝

0

1

0

˛

‹

‚

G

, W “ z-axis “

C

¨

˚

˝

0

0

1

˛

‹

‚

G

.

Then U X W “ 0, so U ‘ W is a direct sum. Here we have U ‘ W “ R3.

˛ V “ R4, U “

C

¨

˚

˚

˚

˝

1

1

1

0

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1

´1

0

0

˛

‹

‹

‹

‚

G

, W “

C

¨

˚

˚

˚

˝

1

1

0

0

˛

‹

‹

‹

‚

G

. We can check that U XW “ 0, so U ‘W

is a direct sum. But U ‘ W ‰ R4: dimpU ‘ W q “ dimpUq ` dimpW q ´ dimpU X W q “

2 ` 1 ´ 0 “ 3.
How do we show that the intersection is just 0: take a vector v P U XW . Then v P U ,

so

v “ λ1

¨

˚

˚

˚

˝

1

1

1

0

˛

‹

‹

‹

‚

` λ2

¨

˚

˚

˚

˝

1

´1

0

0

˛

‹

‹

‹

‚

.

But v P W , so also

v “ µ

¨

˚

˚

˚

˝

1

1

0

0

˛

‹

‹

‹

‚

.

So we have
¨

˚

˚

˚

˝

λ1 ` λ2

λ1 ´ λ2

λ1

0

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

µ

µ

0

0

˛

‹

‹

‹

‚

Looking at the third row, we get λ1 “ 0. Then the first two rows give µ “ λ2 “ ´λ2, so
µ “ λ2 “ 0. So v “ 0.

D. Bases and Dimension: Study guide

Concept review.

˛ Dimension of a vector space.
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˛ Vector space product (or cartesian product), dimension of vector space product.
˛ Possible sizes of linear independent sets, spanning sets, bases, in a given vector space.
˛ Relationships among the concepts of linear independence, spanning set, basis, and di-
mension.

˛ Plus/Minus Theorem.
˛ Check one get one free for bases.
˛ Extending to a basis, reducing to a basis.
˛ Effect of elementary column operations on span of columns.
˛ Dimensions of subspaces.
˛ Dimensions of sums of subspaces, dimensions of direct sum of subspaces.

Skills.

˛ Find dimension of a vector space (or subspace).
˛ Use dimension to determine whether a set of vectors is a basis for a finite-dimensional
vector space.

˛ Extend a linearly independent set to a basis.
˛ Reduce a spanning set to a basis.
˛ Find a basis for the column space of a matrix.
˛ Find the basis for the intersection of two subspaces.
˛ Find the dimension of a sum of subspaces.
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CHAPTER 7

Detour: Complex Numbers

A. Complex Numbers

Some of you will know complex numbers from school. We will go through the main points.

The complex numbers C are numbers z “ x ` iy with x, y P R. Here i2 “ ´1, giving, for
zk “ xk ` iyk,

addition: z1 ` z2 “ x1 ` x2 ` ipy1 ` y2q

and multiplication: z1z2 “ px1 ` iy1qpx2 ` iy2q “ x1x2 ´ y1y2 ` ipy1x2 ` x1y2q.

Given z “ x ` iy, we call Repzq “ x the real part and Impzq “ y the imaginary part of z.

|z| “
a

x2 ` y2 is the modulus of z, and z “ x ´ iy is the complex conjugate of z.
We have zz “ x2 ` y2 “ |z|2.
We can depict complex numbers in an Argand diagram:

Retzu

Imtzu

´4

´4i

´3

´3i

´2

´2i

´1

´1i

1

1i

2

2i

3

3i

4

4i

z

x

y

We will draw more into the argand diagram in lectures.
The angle θ which the line to z makes with the positive x-axis is called the argument of z. We
have

Repzq “ |z| cos θ

Impzq “ |z| sin θ.

We can write z in polar coordinates as z “ |z|pcos θ ` i sin θq “ |z|eiθ.
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Complex numbers have the very useful property that we can factorise any polynomial into linear
factors. For example

˛ x2 ´ 1 “ px ` 1qpx ´ 1q can be factorised in real numbers, but
˛ x2 `1 has no real roots. But x2 `1 “ px` iqpx´ iq can be factorised in complex numbers,
so it has complex roots.

This will become important, particularly when we study eigenvalues.

Exercise 7.1: Show that a complex number z is real if and only if z “ z.

If you are not that familiar with complex numbers and want to practice a bit, I recommend https:

//nrich.maths.org/1403, the section “The Basics of Complex Numbers” has a few exercises you
can do to get some practice.

B. Complex vector spaces

We saw the definition of a real vector space last semester; the same definition gives complex vector
spaces if we take the scalars to be complex numbers instead. When we want to talk about real and
complex vector spaces at the same time, we often write F , where F can be R or C. Later on you
might meet vector spaces over other fields such as Zp, the integers modulo a prime, but we won’t
do that in this course.

Examples 7.2: ˛ Cn is a complex vector space for any natural number n.

e.g. C3 has vectors
´

z1
z2
z3

¯

with entries zj P C, addition is entry-wise

´

z1
z2
z3

¯

`

´

w1
w2
w3

¯

“

´

z1`w1
z2`w2
z3`w3

¯

and for a complex scalar λ P C, we have scalar multiplication

λ
´

z1
z2
z3

¯

“

ˆ

λz1
λz2
λz3

˙

,

just like in R3.
˛ Mm,n, the set of m ˆ n matrices, is a complex vector space if we take complex matrices,
i.e. matrices with complex numbers as entries.

˛ The set of polynomials with complex coefficients is a complex vector space.
˛ The set C of complex numbers can be viewed as

¨ a complex vector space of dimension 1: “vectors” are complex numbers z, and scalars
are also complex numbers (This is analogous to how R is a one-dimensional real
vector space.) Think of this as one complex degree of freedom: for each “vector”, I
can choose one complex number.

¨ a real vector space of dimension 2: any complex number z can be written as z “ x`iy
with x, y P R, the real and imaginary part. Think of this as two real degrees of
freedom: for each “vector”, I can choose two real numbers.

Exercise 7.3: Make sure you know how to verify the vector space axioms for all these examples.
In particular, you should show that C is a real vector space as given in the very last example.

Remark 7.4: The vector space axioms are exactly the same for real and complex vector spaces.
The difference is which scalars we use. For example,

˛ for a linear combination in a real vector space, we use real numbers as scalars,
˛ for a linear combination in a complex vector space, we use complex numbers as scalars,
so more scalars are possible.

For example, as we said in the last example above, C can be viewed as a real or complex vector
space. Here is one particular difference:
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Chapter 7. Detour: Complex Numbers Real and imaginary parts of matrices

˛ As a real vector space, we have

λ ¨ 1 ` µ ¨ i “ 0 with λ, µ P R
ô λ “ µ “ 0.

We can’t cancel out the i with any real numbers. So 1 and i are linearly independent in
the real vector space C.

˛ But as a complex vector space, we have a linear combination

λ ¨ 1 ` µ ¨ i “ 0 with λ “ i, µ “ ´1,

because now complex scalars are allowed. So in the complex vector space C, 1 and i are
linearly dependent.

Remark 7.5: The definition of a subspace and the results on how to check something is a subspace
carry over just the same to complex vector spaces.

C. Real and imaginary parts of matrices

Given a vector or matrix with complex entries, we can also form real and imaginary parts: Let

zj “ xj ` iyj with xj , yj P R, and v “

¨

˝

z1
z2
...
zn

˛

‚. Then Repvq “

¨

˝

x1
x2

...
xn

˛

‚ and Impvq “

¨

˝

y1
y2

...
yn

˛

‚, and

we have v “ Repvq ` i Impvq. Similarly for a matrix A with entries zjk “ xjk ` iyjk, we have
RepAq “ pxjkq, ImpAq “ pyjkq and A “ RepAq ` i ImpAq.

2 ˆ 2 example:

˜

2 ` 3i
?
3 ` i

8i 6

¸

“

˜

2
?
3

0 6

¸

` i

˜

3 1

8 0

¸

We can also form complex conjugates componentwise:

if v “

¨

˝

z1
z2
...
zn

˛

‚ then v “

¨

˝

z1
z2
...
zn

˛

‚“ Repvq ´ i Impvq, and similarly for matrices.

2 ˆ 2 example: A “

˜

2 ` 3i
?
3 ` i

8i 6

¸

A “

˜

2 ´ 3i
?
3 ´ i

´8i 6

¸

“

˜

2
?
3

0 6

¸

´ i

˜

3 1

8 0

¸

Proposition 7.6: (Properties of complex conjugation)
Let u, v P Cn and let A be a m ˆ k complex matrix, B a k ˆ n complex matrix, and λ P C.
Then

(a) u “ u and A “ A.
(b) λu “ λu.
(c) u ` v “ u ` v.

(d) pAT q “ pAqT .

(e) pABq “ pAqpBq.

Proof. Exercise. (For example, consider individual entries.) □

For the rest of this course, when we say “vector space” we mean “real or complex vector space”,
unless otherwise specified.
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D. Complex roots of real polynomials

As we said earlier, one of the main (algebraic) properties of complex numbers is that any polynomial
has a root in C.

Example 7.7: The polynomial x2 ` 8x ` 20 has roots

x1,2 “
´b ˘

?
b2 ´ 4ac

2a

“
´8

2
˘

?
64 ´ 80

2

“ ´4 ˘
4i

2
“ ´4 ˘ 2i.

Let’s check:

px ` 4 ´ 2iqpx ` 4 ` 2iq “ px ` 4q2 ´ p2iq2

“ x2 ` 8x ` 16 ` 4

“ x2 ` 8x ` 20

so this indeed factorises our quadratic polynomial.

Notice that the roots come out as a complex conjugate pair. Looking at the formula for the roots
of a quadratic, we see that if we do get a complex number as the root of a real polynomial, the
i can only come from the discriminant. And in that case we get the two roots being complex
conjugates.

On the other hand, we can also check

px ´ z1qpx ´ z1q “ x2 ´ pz1 ` z1qx ` z1z1.

Here

z1 ` z1 “ px1 ` iy1q ` px1 ´ iy1q “ 2x “ 2Repz1q

z1 ¨ z1 “ px1 ` iy1qpx1 ´ iy1q “ x2
1 ´ i2y21 “ x2

1 ` y21 “ |z1|2

i.e.
px ´ z1qpx ´ z1q “ x2 ´ 2Repz1qx ` |z1|2,

where 2Repz1q and |z1|2 are real numbers.

Slogan: If a real poly has complex roots, then the roots come in complex conjugate pairs.

E. Complex Numbers: Study guide

Concept review.

˛ Complex numbers, real and imaginary part, complex conjugation.
˛ Complex vector spaces.
˛ Vectors and matrices with complex entries, real and imaginary part of those.

Skills.

˛ Determine the real and imaginary part of a complex number or a complex vector or
matrix.

˛ Determine the complex conjugate of a complex number, or complex vector or matrix.
˛ Verify something is a complex vector space.
˛ Find (possibly complex) roots of a real polynomial.
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CHAPTER 8

Linear Maps

A. Definition and basic properties

Recall the following definition from Chapter 1:

Definition 8.1: Given m ˆ n matrix A, the function TA : Rn ÝÑ Rm which sends v ÞÝÑ Av
is called a matrix transformation. We may sometimes just write A : Rn ÝÑ Rm.

We have seen that the properties of matrix multiplication give us:

Apu ` vq “ Au ` Av for any u, v P Rn;

Apλvq “ λ ¨ Av for any v P Rn, λ P R.

Example 8.2: (Not lectured, just a reminder.)
Consider the map

˜

a b

c d

¸˜

x1

x2

¸

“

˜

ax1 ` bx2

cx1 ` dx2

¸

.

Then we have

˜

a b

c d

¸˜˜

x1

x2

¸

`

˜

y1

y2

¸¸

“

˜

a b

c d

¸˜

x1 ` y1

x2 ` y2

¸

“

˜

apx1 ` y1q ` bpx2 ` y2q

cpx1 ` y1q ` dpx2 ` y2q

¸

“

˜

ax1 ` ay1 ` bx2 ` by2q

cx1 ` cy1 ` dx2 ` dy2

¸

“

˜

ax1 ` bx2

cx1 ` dx2

¸

`

˜

ay1 ` by2

cy1 ` dy2

¸

and
˜

a b

c d

¸˜

λ

˜

x1

x2

¸¸

“

˜

a b

c d

¸˜

λx1

λx2

¸

“

˜

aλx1 ` bλx2

cλx1 ` dλx2

¸

“ λ

˜

ax1 ` bx2

cx1 ` dx2

¸

This property of “preserving addition and scalar multiplication” is a very important one, and we
call such a map linear:

Definition 8.3: Given two vector spaces V,W , a function T : V ÝÑ W is called a linear
map (or linear transformation) if

T pλv ` µuq “ λT pvq ` µT puq for all u, v P V, λ, µ P F.

(Here F “ R or C.)
The space V is called the domain (or source) of T , and W is called codomain (or target)
of T .

In words we would say linear maps preserve linear combinations.
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Consequences 8.4: ˛ Setting µ “ 0 we get T pλvq “ λT pvq: you can take out scalars.
˛ Setting λ “ µ “ 1 we get T pv ` uq “ T pvq ` T puq: linear maps preserve addition.
˛ We could define a linear map by asking for these two properties, as we can put them
together to give the one we use in the definition. So it does not matter whether you check
preservation of linear combinations in one go as given in the definition, or separately
check addition and scalar multiplication (as long as you do both of those).

Examples 8.5: a) [Matrix transformations] As we saw in Chapter 1, any real m ˆ n matrix
A gives a linear map TA : Rn ÝÑ Rm via v ÞÝÑ Av. So

˛ the domain of TA is Rn: to make the matrix multiplication work, we need the vector v to
have as many entries as A has columns;

˛ the codomain of TA is Rm: the vector Av has as many entries as A has rows.

If e1 “

˜ 1
0
...
0

¸

, . . ., en “

˜ 0
...
0
1

¸

is the standard basis of Rn, we notice that

˛ Ae1 gives the first column of A,
˛ Ae2 gives the second column of A,
˛ . . .
˛ Aen gives the last column of A.

So the columns of A are the images of the standard basis vectors:
TApekq “ pkth column of A).

Then using the linearity, we can see things like
˛ TApe1 ` e2q “ TApe1q ` TApe2q “ sum of first two columns of A.
˛ TApe1 ´ 2enq “ TApe1q ´ 2TApenq “ first column minus two times last column.

Similarly any complex m ˆ n matrix gives a linear map A : Cn ÝÑ Cm.

b) [Dilations] For any r P R, the function T :

˜

x1

...
xn

¸

ÞÝÑ

˜

rx1

...
rxn

¸

is linear: if we write v “

˜

x1

...
xn

¸

and u “

˜

y1

...
yn

¸

, then

T pλv ` µuq “ rpλv ` µuq “ λrv ` µru by vector space axioms

“ λT pvq ` µT pvq.

There are two particularly important cases of this example:
˛ when r “ 0, we get the zero map 0: Rn ÝÑ Rn, which sends every vector to 0;
˛ when r “ 1, we get the identity map id: Rn ÝÑ Rn, which sends every vector to itself.

c)
[Zero map] For any two vector spaces V,W , there is always a zero map 0: V ÝÑ W
which sends every vector v P V to 0 P W , and this is linear.

d)
[Identity] For any vector space V , there is always the identity map id : V ÝÑ V which
sends every vector v P V to itself, and this is linear.

e) [Projections] The function S : R2 ÝÑ R sending p
x1
x2

q ÞÝÑ x1 is linear:

S pλp
x1
x2

q ` µp
y1
y2 qq “ S

´´

λx1`µy1

λx2`µy2

¯¯

“ λx1 ` µy1

“ λS pp
x1
x2

qq ` µS pp
y1
y2 qq

f) The function P : R2 ÝÑ R2 sending p
x1
x2

q ÞÝÑ p
x1
x2

q ` p 5
3 q is not linear:

P pp
x1
x2

q ` p
y1
y2 qq “

`

x1`y1
x2`y2

˘

` p 5
3 q

but P pp
x1
x2

qq ` P pp
y1
y2 qq “ p

x1
x2

q ` p
y1
y2 q ` p 10

6 q.

“Translations are not linear.”
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g) The function Q : R2 ÝÑ R sending p
x1
x2

q ÞÝÑ x1x2 is not linear:

Q pp
x1
x2

q ` p
y1
y2 qq “ px1 ` y1qpx2 ` y2q “ x1x2 ` y1x2 ` x1y2 ` y1y2

so e.g. Q pp 1
1 q ` p 1

1 qq “ 4

but Q pp
x1
x2

qq ` Q pp
y1
y2 qq “ x1x2 ` y1y2

so Q pp 1
1 qq ` Q pp 1

1 qq “ 2.

h) Let P be the space of all real polynomials. The function T : P ÝÑ P defined by T ppq “ xp is
linear: for polynomials p, q P P , we have

T pλp ` µqq “ xpλp ` µqq “ λxp ` µxq.

i) Let V be the space of infinitely differentiable functions on the interval p0, 1q. Then differntiation
is a linear map D : V ÝÑ V :

Dpλf ` µgq “ pλf ` µgq1 “ λf 1 ` µg1.

Exercise 8.6: Show that if T is linear, then

T pλ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λnvnq “ λ1T pv1q ` ¨ ¨ ¨ ` λnT pvnq.

We will now see some of the basic properties of linear maps.

Proposition 8.7: (Linear maps preserve 0 and differences.)
If T : V ÝÑ W is a linear map, then

(i) T p0q “ 0, and
(ii) T pu ´ vq “ T puq ´ T pvq.

Proof. Exercise. □

We know that multiplying matrices of matching sizes gives another matrix. This corresponds to
the composition of linear maps.

Proposition 8.8: (Composite of linear maps is linear.)
Let T : U ÝÑ V and S : V ÝÑ W be linear maps. Then the composite S˝T : U ÝÑ W given
by S˝T puq “ SpT puqq is linear.

Proof.

S˝T pλ1u1 ` λ2u2q “ SpT pλ1u1 ` λ2u2qq

“ Spλ1T pu1q ` λ2T pu2qq because T is linear

“ λ1SpT pu1qq ` λ2SpT pu2qq because S is linear

“ λ1S˝T pu1q ` λ2S˝T pu2q □

Example 8.9: If A is an m ˆ k matrix and B is a k ˆ n matrix,
then TA˝TB “ TAB : composing the linear maps given by matrix
transformations with A and B gives the matrix transformation with
the matrix product AB. Notice the order: we do TB first and then
TA, as is usual in functions: pTA˝TBqpvq “ TApTBpvqq.

Rn TB ,2

TAB �&

Rk

TA

��
Rm

As we are used to from the identity matrix, composing a map on either side with the identity map
does not change the map.

Proposition 8.10: (Composition with identity)
For any linear map T : U ÝÑ V , we have

(i) T ˝idU “ T : U ÝÑ V and
(ii) idV ˝T “ T : U ÝÑ V .

U
idU ,2

T �%

U

T
��

T

�%
V

idV

,2 V

Proof. Exercise. □
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Exercise 8.11: In general, composition of maps is associative. This means, if f : X ÝÑ Y ,
g : Y ÝÑ Z and h : Z ÝÑ W , then ph˝gq˝f “ h˝pg˝fq : X ÝÑ W . Show this by looking at how
these two composites act on a single element a P X.

One very nice property of linear maps is that they are determined by their values on a basis.

Proposition 8.12: (Linear maps are determined by values on a basis.)
Let T : V ÝÑ W be a linear map and v1, ¨ ¨ ¨ , vn a basis of V . Then for any v P V we have

T pvq “ λ1T pv1q ` ¨ ¨ ¨λnT pvnq,

where the λi are scalars such that v “ λ1v1 ` ¨ ¨ ¨ ` λnvn.
Also, any choice of images w1, . . . wn P W such that T pviq “ wi gives rise to a linear map in
this way.

Proof. As a basis spans, any v P V can be written as v “ λ1v1 ` ¨ ¨ ¨ ` λnvn. So by linearity,
T pvq “ T pλ1v1 ` ¨ ¨ ¨ ` λnvnq “ λ1T pv1q ` ¨ ¨ ¨ ` λnT pvnq.
For the second part, given T pviq “ wi, we can define T pvq “ λ1T pv1q ` ¨ ¨ ¨ ` λnT pvnq. This is
unambiguous, because v “ λ1v1 ` ¨ ¨ ¨ ` λnvn for unique coefficients λi, because a basis is linearly
independent.
We need to check that if T is defined in this way, it really is linear. Let u, v P V , then u “

µ1v1 ` . . .`µnvn and v “ λ1v1 ` . . .`λnvn for unique µi, λi P F . Then for any scalars ν1, ν2 P F ,
we have

ν1u ` ν2v “ ν1pµ1v1 ` . . . ` µnvnq ` ν2pλ1v1 ` . . . ` λnvnq

“ pν1µ1 ` ν2λ1qv1 ` pν1µ2 ` ν2λ2qv2 ` . . . ` pν1µn ` ν2λnqvn.

So

T pν1u ` ν2vq “ pν1µ1 ` ν2λ1qT pv1q ` pν1µ2 ` ν2λ2qT pv2q ` . . . ` pν1µn ` ν2λnqT pvnq

and ν1T puq ` ν2T pvq “ ν1 rµ1T pv1q ` . . . ` µnT pvnqs ` ν2 rλ1T pv1q ` . . . ` λnT pvnqs

“ pν1µ1 ` ν2λ1qT pv1q ` pν1µ2 ` ν2λ2qT pv2q ` . . . ` pν1µn ` ν2λnqT pvnq,

so T pν1u ` ν2vq “ ν1T puq ` ν2T pvq, and T is linear. □

Examples 8.13: a) The matrix A “ p 3 1
5 6 q sends the standard basis vectors e1 “ p 1

0 q and e2 “ p 0
1 q

to p 3
5 q and p 1

6 q respectively. Then for any v “ p
x1
x2

q we have

v “ x1p 1
0 q ` x2p 0

1 q

so
Av “ x1p 3

5 q ` x2p 1
6 q “

`

3x1`x2
5x1`6x2

˘

.

b) Consider the basis

v1 “

´

1
1
1

¯

, v2 “

´

1
1
0

¯

, v3 “

´

1
0
0

¯

of R3. We can define a linear map T : R3 ÝÑ R2 by setting

T pv1q “ p 1
0 q, T pv2q “

`

2
´1

˘

, T pv3q “ p 4
3 q.

Given any v “

´

x1
x2
x3

¯

P R3, to determine T pvq, we first find the coordinates λ1, λ2, λ3 such that

v “ λ1v1 ` λ2v2 ` λ3v3:
´

x1
x2
x3

¯

“ λ1

´

1
1
1

¯

` λ2

´

1
1
0

¯

` λ3

´

1
0
0

¯

“

ˆ

λ1`λ2`λ3

λ1`λ2

λ1

˙

So λ1 “ x3, λ2 “ x2 ´ x3 and λ3 “ x1 ´ x2. So

T pvq “ x3p 1
0 q ` px2 ´ x3q

`

2
´1

˘

` px1 ´ x2qp 4
3 q.

This completely determines the map T .
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Find formula for linear map from values on a basis
Suppose we know v1, . . . , vn is a basis for V , and we have T pviq “ wi P W , i.e. we know the
values of a linear map T on this basis. How do we work out what T does on a general vector
v P V ? In the case where V “ Rn:

˛ Work out the coefficients λ1, . . . , λn such that
¨

˚

˚

˝

x1

...

xn

˛

‹

‹

‚

“ λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λnvn.

(Either see if you can just write them down, or solve the inhomogeneous linear
system.)

˛ Then T

¨

˚

˚

˝

¨

˚

˚

˝

x1

...

xn

˛

‹

‹

‚

˛

‹

‹

‚

“ λ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λnwn.

Study guide.
Concept review

˛ Linear map.
˛ Domain and codomain.
˛ Composition of maps.
˛ Zero map, identity map.
˛ Linear map is determined by values on a basis.
˛ Build up a repertoire of and intuition for linear maps.

Skills

˛ Determine whether a function is a linear map.
˛ Find a formula for a linear map given values on a basis.

B. Kernels and Images

In Chapter 4, we learnt about the column space and the null space of a matrix. These concepts
also exist for general linear maps.

Definition 8.14: Given a linear map T : U ÝÑ V , the kernel of T is

KerT “ tu P U | T puq “ 0u everything which is mapped to 0

and the image of T is

ImT “ tv P V | Du P U with T puq “ vu everything in V that is reached by T

Examples 8.15: a) If T is a matrix transformation T pvq “ Av, then the kernel of T is exactly
the null space of the matrix A, and the image of T is exactly the column space of A. This is
because the columns are the images of the standard basis vectors

e1 “

˜ 1
0
...
0

¸

, . . . , en “

˜ 0
...
0
1

¸

,

so as a linear map is determined by values on a basis (Proposition 8.12), the linear combinations
of the columns are exactly images under T : if A has columns a1, . . . , an, then

x1a1 ` ¨ ¨ ¨ ` xnan “ x1T pe1q ` ¨ ¨ ¨ ` xnT penq “ T

˜˜

x1

...
xn

¸¸

.
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b) Recall the projection S : R2 ÝÑ R sending p
x1
x2

q to x1.

KerS “ tp
x1
x2

q | x1 “ 0u “
␣`

0
x2

˘

| x2 P R
(

ImS “ R

because for any x P R, we have for example p x
0 q P R2 with Spp x

0 qq “ x.
c) The map T : P ÝÑ P sending a polynomial p to T ppqpxq “ xppxq has

KerT “ t0u — only 0 is mapped to 0

ImT “ tpolynomials with constant term 0u.

d) The differentiation map D : V ÝÑ V , where V is the space of infinitely differentiable functions
on p0, 1q, has

KerD “ tconstant functionsu

ImD “ V

Exercise 8.16: Determine the kernel and image of the zero map and the identity, and their
respective dimensions in terms of the dimension of V .

Proposition 8.17: (Kernels and images are subspaces.)
Let T : U ÝÑ V be a linear map. Then KerT is a subspace of the domain U and ImT is a
subspace of the codomain V .

Proof. We must check:

(i) 0 P KerT : Yes, as T p0q “ 0 by Proposition 8.7.
(ii) If u, v P KerT , then T pu ` vq “ T puq ` T pvq “ 0 ` 0 “ 0. So also u ` v P KerT .
(iii) If u P KerT and λ P F , then T pλuq “ λT puq “ λ ¨ 0 “ 0. So also λu P KerT .

So KerT is a subspace.
Exercise Check the corresponding properties for ImT . □

As they are subspaces, the kernel and image of a linear map have dimensions.

Definition 8.18: Given a linear map T : U ÝÑ V , the dimension of the image of T is called
rank and written rankpT q or rpT q. The dimension of the kernel is called nullity and written
nullitypT q or npT q.

These two quantities are related.

Theorem 8.19: (Rank-nullity)
If T : V ÝÑ W is a linear map with V finite dimensional, then

npT q ` rpT q “ dimV.

Proof. Let dimV “ n. Let v1, . . . , vk be a basis for KerT , and extend it to a basis v1, . . . , vn
for V (possible by “extend to basis” Theorem 6.15). Then T pv1q “ T pv2q “ ¨ ¨ ¨ “ T pvkq “ 0, as
these vectors are in the kernel of T . We will show that T pvk`1q, T pvk`2q, . . . , T pvnq form a basis
for ImT .
First of all, these vectors span ImT : for w P ImT , there exists v P V such that w “ T pvq. As
v1, . . . , vn is a basis for V ,

v “ λ1v1 ` ¨ ¨ ¨ ` λnvn for some λi P F.
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So

w “ T pvq “ T pλ1v1 ` ¨ ¨ ¨ ` λnvnq

“ λ1T pv1q ` ¨ ¨ ¨ ` λnT pvnq by linearity

“ 0 ` ¨ ¨ ¨ ` 0 ` λk`1T pvk`1q ` ¨ ¨ ¨ ` λnT pvnq.

So T pvk`1, q . . . , T pvnq span ImT .
To show they are linearly independent, suppose

µk`1T pvk`1q ` ¨ ¨ ¨ ` µnT pvnq “ 0 for some µk`1, . . . , µn P F.

Then by linearity T pµk`1vk`1 ` ¨ ¨ ¨ `µnvnq “ 0, so µk`1vk`1 ` ¨ ¨ ¨ `µnvn P KerT . But v1, ¨ ¨ ¨ , vk
is a basis for KerT , so

µk`1vk`1 ` ¨ ¨ ¨ ` µnvn “ µ1v1 ` ¨ ¨ ¨µkvk.

But then
µ1v1 ` ¨ ¨ ¨ ` µkvk ´ µk`1vk`1 ´ ¨ ¨ ¨ ´ µnvn “ 0.

But v1, . . . , vn are a basis of V , so they are linearly independent, so all the µj “ 0. This shows
that T pvk`1q, . . . , T pvnq are linearly independent, so dimpImT q “ n ´ k. So

n “ dimV “ k ` pn ´ kq “ npT q ` rpT q.

□

Examples 8.20: Go through any of the linear maps you have met so far, either as examples in the
notes, or from the Workbook, or other practice e.g. from Wiley+, and check that their rank and
nullity are related in this way. Start on the 4 examples after the definition of kernel and image.

Study guide.
Concept review

˛ Kernel and image of linear map.
˛ Properties of kernel and image.
˛ Rank and nullity of linear map.
˛ Relationship between rank and nullity of a linear map.

Skills

˛ Find the kernel and image of a linear map.
˛ Find bases for kernel and image of a linear map.
˛ Find rank and nullity of a linear map.

C. Surjective and injective functions

We have have seen that for a linear map T , we always have T p0q “ 0. In examples, we’ve seen that
sometimes other vectors are mapped to 0 as well, and sometimes 0 is the only vector mapped to
0. We have also seen that the image is always a subset of the codomain, and sometimes it is the
whole of the codomain and sometimes it is not. These special properties get special names, which
are actually applied to all functions, not just linear maps.

Definition 8.21: A function f : X ÝÑ Y is called injective if for any a, b P X, fpaq “ fpbq
implies a “ b.
Slogan: “Different elements have different images.”
f is called surjective if Impfq “ Y .
Slogan: “f reaches everything in the codomain.”

‚ ‚

‚ ‚

‚ ‚

neither injective nor surjective

‚ ‚

‚ ‚

‚ ‚

‚

surjective, not injective

‚ ‚

‚ ‚

‚ ‚

‚

injective, not surjective
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Examples 8.22: Look back at the examples after the definition of linear map.

b) [Dilations] If r ‰ 0, then T : Rn ÝÑ Rn defined by T pvq “ rv is injective:

If rv “ rw

ñ rpv ´ wq “ 0

ñ v ´ w “ 0

ñ v “ w.

T is also surjective: For any w P Rn, also 1
rw P Rn, and r ¨ p 1

rwq “ w.
c) The zero map 0: V ÝÑ W is

not injective as long as V ‰ t0u;
not surjective as long as W ‰ t0u.

d) The identity id : V ÝÑ V is both injective and surjective.
e) [Projection] S : R2 ÝÑ R with S pp

x1
x2

qq “ x1 is surjective:
for any x P R, S pp x

0 qq “ x.
It is not injective: S pp 1

0 qq “ S pp 1
1 qq “ 1.

h) T : P ÝÑ P with T ppq “ xp is injective:
Suppose p “ a0 ` a1x ` ¨ ¨ ¨ ` anx

n and q “ b0 ` b1x ` ¨ ¨ ¨ ` bmxm and xp “ xq.

ñ a0x ` a1x
2 ` ¨ ¨ ¨ anx

n`1 “ b0x ` ¨ ¨ ¨ ` bmxm`1

ñ n “ m, and ak “ bk for all k, by comparing coefficients.

ñ p “ q.

So T is injective.
But T is not surjective: the polynomial p “ 1 has no preimage (there is no poly q with

xq “ 1).

Proposition 8.23: (Composing injective or surjective functions)
Consider functions f : X ÝÑ Y and g : Y ÝÑ Z.

(i) If f and g are both injective, then the composite g˝f : X ÝÑ Z is injective.
(ii) If f and g are both surjective, then the composite g˝f : X ÝÑ Z is surjective.

Proof. (i) Suppose pg˝fqpaq “ pg˝fpbq. Then

gpfpaqq “ gpfpbqq

ñ fpaq “ fpbq because g injective

ñ a “ b because f injective.

(ii) Given z P Z, there is some y P Y with gpyq “ z because g is surjective. Then there is some
x P X with fpxq “ y because f is surjective. So gpfpxqq “ z, so g˝f is surjective.

□

If we look at linear maps rather than general functions, we can check if a linear map is injective
just by looking at the kernel.

Proposition 8.24: (Injectivity via kernels)
If T : V ÝÑ W is a linear map between vector spaces, then T is injective if and only if
KerT “ 0.

Proof. If T is injective, then

v P KerT ñ T pvq “ 0 ñ T pvq “ T p0q ñ v “ 0.

So KerT “ t0u.
Conversely, if KerT “ 0, suppose T pvq “ T pwq. Then

T pvq ´ T pwq “ 0 ñ T pv ´ wq “ 0 ñ v ´ w P KerT ñ v ´ w “ 0 ñ v “ w.

So T is injective. □
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Exercise 8.25: Given linear maps T : U ÝÑ V and S : V ÝÑ U ,
show that if S˝T “ idU , (that is, SpT puqq “ u for all u P U), then

(i) T is injective, and
(ii) S is surjective.

U
T ,2

idU �%

V

S
��
U

Study guide.
Concept review

˛ Injective and surjective functions.
˛ Behaviour of injectivity and surjectivity under composition.

Skills

˛ Determine whether a map is injective or surjective.

D. Isomorphisms

Definition 8.26: A linear map T : V ÝÑ W which is both injective and surjective is called a
(linear) isomorphism. If there exists some linear isomorphism between V and W , we say
the two spaces are isomorphic and write V – W .

Examples 8.27: a) If T is a matrix transformation T pvq “ Av, then T is an isomorphism exactly
when A is an invertible matrix.

b) The identity map id: V ÝÑ V is an isomorphism for any vector space V .
c) The dilation map T : Rn ÝÑ Rn given by T pvq “ rv with r ‰ 0 is an isomorphism.
d) The projection map T : R2 ÝÑ R we saw before is not an isomorphism: it is not injective.
e) Let Pn be the space of complex polynomials of degree up to n, and let S : Pn ÝÑ Cn`1 be the

map defined by Spa0 ` a1x ` ¨ ¨ ¨ ` anx
nq “

¨

˝

a0
a1

...
an

˛

‚. This is an isomorphism. (Exercise: check

it really is a linear map, and check that it is injective and surjective.)

We’ve seen that a map can be injective without being surjective, or surjective without being
injective. But when looking at a linear map from one space to itself, the rank-nullity theorem
restricts the possibilities.

Proposition 8.28: (Check one get one free for isos)
If T : V ÝÑ V is a linear map from a finite-dimensional vector space to itself, then the fol-
lowing are equivalent:

(i) T is injective.
(ii) T is surjective.
(iii) T is an isomorphism.

Proof.

T injective

ô KerT “ 0 by Injectivity via Kernels, Prop. 8.24

ô npT q “ 0

ô rpT q “ dimV by the Rank-Nullity Theorem, Theorem 8.19

ô ImT “ V because ImT subspace of V (see Theorem 6.20)

ô T surjective.

This proves “(i)ô(ii)”, i.e. as soon as T is one of injective or surjective, it is both, making it an
isomorphism. □

Similarly to matrix inverses, isomorphisms have inverse linear maps.
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Definition 8.29: Given a linear map T : U ÝÑ V , an in-
verse of T is a linear map S : V ÝÑ U in the other direction
such that

S˝T “ idU : U ÝÑ U and

T ˝S “ idV : V ÝÑ V.

U
T ,2

idU �%

V

S
��

idV

�%
U

T
,2 V

Example 8.30: If A is an invertible nˆn matrix, then pTAq´1 “ TA´1 : the inverse transformation
uses the inverse matrix. This is because

pTA´1˝TAqpvq “ A´1pAvq “ Inv “ v

and

pTA˝TA´1qpvq “ ApA´1vq “ Inv “ v.

Proposition 8.31: (Inverses are unique.)
If a linear map T : U ÝÑ V has an inverse, then this inverse is unique.

Proof. Suppose S1 and S2 are both inverses to T . Then

S1 “ S1˝idV because composition with the identity does not change the map,

“ S1˝pT ˝S2q because S2 is an inverse to T ,

“ pS1˝T q˝S2 because composition of functions is associative,

“ idU ˝S2 because S1 is an inverse to T ,

“ S2 because composition with the identity does not change the map,

so they are the same map. □

Notation 8.32: As inverses are unique, it is unambiguous to write T´1 for the inverse of T ,
if it exists.

Fact 8.33: A linear map T : U ÝÑ V has an inverse if and only if it is an isomorphism.

Proof. [Not lectured] Exercise 8.25 shows that if T has an inverse, then it is both injective
and surjective, so an isomorphism.
Conversely, suppose T is both injective and surjective. We can define the inverse T´1 : V ÝÑ U
by setting T´1pvq “ u where u P U is such that T puq “ v. Such a u exists because T is surjective,
and it is unique because T is injective. It is clear that then T ˝T´1 “ idV and T´1

˝T “ idU . The
harder part is to show that this T´1 is also a linear map. We won’t do it here. □

Corollary 8.34: The inverse of an isomorphism is also an isomorphism.

Examples 8.35: Looking back to the examples after the definition of isomorphism:

a) A matrix transformation TA is an isomorphism if and only if A is invertible: we’ve already seen
that then pTAq´1 “ TA´1 .

b) The identity map id: V ÝÑ V is its own inverse.
c) The dilation map T : Rn ÝÑ Rn given by T pvq “ rv with r ‰ 0 has inverse T´1pvq “ 1

rv.

d) The map S : Pn ÝÑ Cn`1 defined by Spa0`a1x`¨ ¨ ¨`anx
nq “

¨

˝

a0
a1

...
an

˛

‚has inverse S´1

¨

˝

¨

˝

a0
a1

...
an

˛

‚

˛

‚“

a0 ` a1x ` ¨ ¨ ¨ ` anx
n.
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Since composing two injective linear maps gives another injective linear map, and composing two
surjective linear maps gives another surjective linear map (see Proposition 8.23), it is immediately
clear that composing two isomorphisms gives another isomorphism. But we also have an easy way
to find the inverse of the composite.

Lemma 8.36: (Socks and Shoes)
Given two invertible linear maps T : U ÝÑ V and S : V ÝÑ W , then pS˝T q´1 “ T´1

˝S´1.

If you first put on your socks and then your shoes,
to undo the process you have to first take off your
shoes before you can take off your socks.

U
T ,2

idU

+1

V

S
��

idV

�%
W

S´1

,2 V

T´1

��
U

Proof. As inverses are unique, it is enough to show that pS˝T q˝pT´1
˝S´1q “ idW and

pT´1
˝S´1q˝pS˝T q “ idU . We have, for any u P U ,

pT´1
˝S´1q˝pS˝T q “ T´1

˝pS´1
˝Sq˝T “ T´1

˝idV ˝T “ T´1
˝T “ idU

and similarly for the other direction. □

Isomophisms are special because they have inverses, and also because they send bases to bases.

Proposition 8.37: (Isos perserve bases.)
If T : V ÝÑ W is an isomorphism between finite-dimensional vector spaces and v1, . . . , vn is
a basis of V , then T pv1q, . . . , T pvnq is a basis of W .

Proof. First let us work out the dimension of W . As T is an isomorphism, it is injective, so
npT q “ 0. And it is surjective, so ImT “ W , so dimW “ rpT q. The Rank-Nullity Theorem 8.19
gives us dimV “ npT q ` rpT q “ 0 ` dimW , so for any isomorphism, the dimension of the domain
and codomain have to agree.
So to show that T pv1q, . . . , T pvnq is a basis, it is enough to show that it is linearly independent,
because we have the right number of vectors for “check one get one free on bases” (Proposition 6.13).
Suppose

λ1T pv1q ` ¨ ¨ ¨ ` λnT pvnq “ 0.

Then as T is linear, we have

T pλ1v1 ` ¨ ¨ ¨λnvnq “ 0,

i.e. λ1v1 ` ¨ ¨ ¨λnvn P KerpT q “ t0u. So λ1v1 ` ¨ ¨ ¨λnvn “ 0. But v1, . . . , vn is a basis, so it is
linearly independent, so all λj “ 0. So T pv1q, . . . , T pvnq are linearly independent, and so form a
basis of W “ ImT . □

Theorem 8.38: (Dimension n means iso to Rn.)
Any real vector space of dimension n is isomorphic to Rn. Any complex vector space of
dimension n is isomorphic to Cn.

Proof. To do the proof of both statements at once, we write F to mean R or C.
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Let V be a vector space of dimension n. Then it has some basis v1, . . . , vn. Define a linear map
E : V ÝÑ Fn by

Epv1q “

¨

˝

1
0
0
...
0

˛

‚“ e1 Epv2q “

¨

˝

0
1
0
...
0

˛

‚“ e2

...
...

Epvn´1q “

¨

˝

0
...
0
1
0

˛

‚“ en´1 Epvnq “

¨

˝

0
...
0
0
1

˛

‚“ en.

This extends to a unique linear map by Proposition 8.12. (We have Epvq “

˜

λ1

...
λn

¸

, where v “

λ1v1 ` ¨ ¨ ¨ ` λnvn is the unique linear combination expressing v in terms of the given basis.) The
inverse of E is

E´1

˜˜

λ1

...
λn

¸¸

“ λ1v1 ` ¨ ¨ ¨ ` λnvn,

so E is indeed an isomorphism.
Exercise: Check that these two maps are indeed inverse to each other. □

Remark 8.39: Notice that the isomorphism from V to Rn given in the proof above gives each
vector v P V as a coordinate vector rvsB with respect to the given basis. So “writing a vector
as a coordinate vector with respect to a given basis” is really applying an isomorphism, and then
working in Rn instead.

Corollary 8.40: (Iso ô same dimension.)
Two vector spaces V and W are isomorphic if and only if they have the same dimension.

Proof. The rank nullity theorem already shows us that if V and W are isomorphic, then they
have the same dimension. Conversely, if they have the same dimension n, then by Theorem 8.38,
both spaces are isomorphic to Fn i.e. to Rn if they are both real vector spaces, or to Cn if
they are both complex vector spaces, so there are isomorphisms T : V ÝÑ Fn and S : W ÝÑ Fn.
As the inverse of an isomophism is also an isomorphism (Corollary 8.34) and the composite of
isomorphisms is an isomorphism (Proposition 8.23), we have an isomorphism S´1

˝T : V ÝÑ W . □

Study guide.
Concept review

˛ Isomorphisms and inverses.
˛ Relationship between injectivity and surjectivity for maps from a vector space to itself.
˛ Uniqueness of inverses.
˛ Inverse of a composite.
˛ Conditions for vector spaces to be isomorphic.

Skills

˛ Find inverses to isomorphisms.
˛ Find an isomorphism between vector spaces of the same dimension.

E. Matrix representation of linear maps

Using uniqueness of basis respresetation (Theorem 5.13), we defined the concept of a coordinate
vector in Chapter 5 (Linear Independence and Bases). We can use this idea to represent any
linear map between finite-dimensional vector spaces as a matrix.
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Definition 8.41: Let T : V ÝÑ W be a linear map between finite-dimensional spaces, and
let B “ tv1, . . . , vnu be a basis for V and C “ tw1, . . . , wmu be a basis for W . Then the
matrix for T with respect to the bases B and C is the matrix A whose columns are the
images of the basis vectors of V , written as coordinate vectors with respect to the basis C of
W .

rT sC,B “ CrT sB “ A “

´

rT pv1qsC rT pv2qsC ¨ ¨ ¨ rT pvnqsC

¯

This matrix is therefore a m ˆ n matrix.

Lemma 8.42: (Linear map as matrix transformation)
Given a linear map T : V ÝÑ W and bases B “ tv1, . . . , vnu for V and C “ tw1, . . . , wmu for
W as above, then for any v P V ,

rT pvqsC “ CrT sBrvsB .

In words: to work out the coordinate vector of the image of v, we multiply the matrix for T with
the coordinate vector of v.
The order of the bases in the label is meant to show you that “the B cancels out the B and leaves
the C”.

Proof. Let v “ λ1v1 ` ¨ ¨ ¨ ` λnvn, so the coordinate vector of v with respect to basis B of V
is

rvsB “

¨

˚

˚

˝

λ1

...

λn

˛

‹

‹

‚

.

Then by linearity, T pvq “ λ1T pv1q ` ¨ ¨ ¨ ` λnT pvnq.
If A “ CrT sB is the matrix for T with respect to the given bases, then column k of this matrix
is the vector ak “ rT pvkqsC . As taking coordinate vectors is a linear isomorphism (see proof of
Theorem 8.38), the coordinate vector of T pvq is

rT pvqsC “ λ1rT pv1qsC ` ¨ ¨ ¨ ` λnrT pvnqsC “ λ1a1 ` ¨ ¨ ¨ ` λnan “ A

˜

λ1

...
λn

¸

.

□

Notice that the coordinate vectors of the basis of V are

rv1sB “

¨

˝

1
0
0
...
0

˛

‚“ e1 rv2sB “

¨

˝

0
1
0
...
0

˛

‚“ e2

...
...

rvn´1sB “

¨

˝

0
...
0
1
0

˛

‚“ en´1 rvnsB “

¨

˝

0
...
0
0
1

˛

‚“ en.

This can help you remember or work out what the columns of the matrix A are: since matrix
multiplication gives

Ae1 “ A

¨

˝

1
0
0
...
0

˛

‚“ a1 the first column of A,

and similarly Aek “ ak, the kth column of A, you see that the columns are the images of the basis
vectors for V .
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Another picture that might help you visualise what is going on:

V
T ,2

E
��

W

E1

��
Rn

A
,2 Rm

v
� T ,2

_

E

��

T pvq
_

E1

��
rvsB

�
A
,2 ArvsB “ rT pvqsC

Remark 8.43: In the case when T : V ÝÑ V goes from a vector space to itself, we usually take
the same basis for V “on both sides”. We then just write rT sB instead of BrT sB .
However, there is going to be an exception to this later on, when we talk about base change
matrices.

Examples 8.44: a) The identity map id: V ÝÑ V is represented by the identity matrix with
respect to any basis of V , as long as we choose the same basis for domain and codomain.

b) The zero map 0: V ÝÑ W is represented by the zero matrix with respect to any bases for V
and W .

c) The dilation T : Rn ÝÑ Rn with T pvq “ rv has matrix

A “

¨

˚

˚

˚

˚

˚

˚

˝

r 0 0 ¨ ¨ ¨ 0

0 r 0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0 r 0

0 ¨ ¨ ¨ 0 0 r

˛

‹

‹

‹

‹

‹

‹

‚

“ rI

with r on the diagonal and 0 everywhere else. This is for any basis of Rn, as long as we take
the same basis for domain and codomain.

d) The projection S : R2 ÝÑ R with S pp
x1
x2

qq “ x1 has matrix

A “

´

1 0
¯

with respect to the standard basis vectors e1, e2 of R2 and the basis w1 “ 1 for R.
e) Consider T : Pn ÝÑ Pn`1 with T ppq “ xp. If we use the standard bases 1, x, . . . , xn and

1, x, . . . , xn, xn`1 for the two polynomial spaces, this has pn ` 2q ˆ pn ` 1q matrix

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 ¨ ¨ ¨ 0

1 0 0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 1 0 0

0 ¨ ¨ ¨ 0 1 0

0 ¨ ¨ ¨ 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

This is because T p1q “ x, so the image of the first basis vector is the second basis vector, and
the first column of the matrix represents this. Similarly, T pxkq “ xk`1, so the kth column must
have 0s everywhere and a 1 in the k ` 1st row.

f) Consider D : Pn`1 ÝÑ Pn given by Dppq “ p1, the derivative of the polynomial p. With respect
to the standard bases 1, x, . . . , xn, xn`1 and 1, x, . . . , xn, this has pn ` 1q ˆ pn ` 2q matrix

A “

¨

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0

0 0 2 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0 0 n ` 1

˛

‹

‹

‹

‹

‚

Again this is because
˛ Dp1q “ 0, so the first column must be 0.
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˛ Dpxq “ 1, so the second column must be the first basis vector, which is represented by
˜ 1

0
...
0

¸

.

˛ Dpxkq “ kxk´1, so the kth column has a k in the k ´ 1st entry, and 0s everywhere else.

Working out the matrix for a linear map wrt given bases
Let T : V ÝÑ W be a linear map, v1, . . . , vn basis B for V and w1, . . . , wm basis C for W .
This is how we work out the matrix for T with respect to these bases.

˛ Write down the definition

CrT sB “

´

rT pv1qsC rT pv2qsC ¨ ¨ ¨ rT pvnqsC

¯

,

ideally already substituting the given vectors v1, . . . , vn into it (rather than writing
the symbol v1). This helps because you can refer back to it without having to keep
it in your mind. You can also get some marks already.

˛ Work out the images of the basis vectors:

T pv1q “ . . . , T pv2q “ . . . , ¨ ¨ ¨ , T pvnq “ . . .

I.e. you have to apply the given map to the given basis vectors of V .
˛ Work out the coordinate vectors of the images you have just worked out. I.e. you are
looking for λ1, . . . , λm such that T pv1q “ λ1w1 ` λ2w2 ` ¨ ¨ ¨ ` λmwm. You do this
by solving an inhomogeneous linear system. (See if you can solve it just by looking:
if not, use Gauss-Jordan algorithm.) You have to do this for each T pviq.

TIP: if you are using Gauss-Jordan, you can do them all at the same time: write
the vectors w1, . . . , wm into a matrix, and then write several augmentations after it:
one for each image T pviq that you have worked out.

˛ You should now have rT pv1qsC “

¨

˚

˚

˝

λ1

...

λm

˛

‹

‹

‚

, and similarly for all the images.

˛ Assemble all these coordinate vectors into the matrix

CrT sB “

´

rT pv1qsC rT pv2qsC ¨ ¨ ¨ rT pvnqsC

¯

.

Examples 8.45: ˛ We saw that the projection S : R2 ÝÑ R with S pp
x1
x2

qq “ x1 has matrix

A “

´

1 0
¯

with respect to the standard basis vectors e1, e2 of R2 and the basis w1 “ 1 for R.
If we take basis B “ tv1 “ p 1

1 q, v2 “ p 1
0 qu for the domain instead, then we get matrix

C “

´

1 1
¯

.

Why? As described in the yellow box, we work out Spv1q “ 1 and Spv2q “ 1, which is
already given as coordinate vector in R, so we write those into the two columns.

Why does this still represent the same linear map? When we use matrix C, we have
to use coordinate vectors with respect to the new basis. So given v “ p

x1
x2

q, we have to
write it in the new basis: v “ x2v1 ` px1 ´ x2qv2. So the new coordinate vector for v is
rvsB “ p

x2
x1´x2

q, and then

CrvsB “

´

1 1
¯

˜

x2

x1 ´ x2

¸

“ x2 ` px1 ´ x2q “ x1.

So we do really get the same linear map. Going from p
x1
x2

q to p
x2

x1´x2
q and from A to C

is called base change, and we will see it in more detail next.
˛ Consider the map

T pp
x1
x2

qq “
`

x1`x2
´2x1`4x2

˘

.
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With respect to the standard basis, this has matrix

A “

˜

1 1

´2 4

¸

How do we work out the matrix with respect to the basis

B “ tv1 “ p 1
1 q, v2 “ p 1

2 qu?

We need to find

rT sB “

˜«

T

˜˜

1

1

¸¸ff

B

«

T

˜˜

1

2

¸¸ff

B

¸

.

We work out

T pv1q “ p 2
2 q “ 2v1 ` 0v2

T pv2q “ p 3
6 q “ 0v1 ` 3v2

so the matrix is

C “ rT sB “

˜

2 0

0 3

¸

This happens to be a very nice matrix, and it tells us something about the map that we
could not see from the first matrix: it scales any multiple of v1 by 2, and any multiple
of v2 by 3. We will see this in more detail in the next chapter about eigenvalues and
eigenvectors.

˛ Consider the map

T
´´

x1
x2
x3

¯¯

“
`

x1`x2
x1´x3

˘

.

This is a map T : R3 ÝÑ R2. With respect to the standard bases for both R3 and R2,
this has matrix

A “

˜

1 1 0

1 0 ´1

¸

Let’s work out the matrix wrt basis B “

$

’

&

’

%

v1 “

¨

˚

˝

1

1

1

˛

‹

‚

, v2 “

¨

˚

˝

1

1

0

˛

‹

‚

, v3 “

¨

˚

˝

1

0

0

˛

‹

‚

,

/

.

/

-

for R3 and

basis C “

#

w1 “

˜

1

2

¸

, w2 “

˜

3

1

¸+

for R2.

We want to find

CrT sB “

´”

T
´´

1
1
1

¯¯ı

B

”

T
´´

1
1
0

¯¯ı

B

”

T
´´

1
0
0

¯¯ı

B

¯

.

So we first work out

T
´´

1
1
1

¯¯

“ p 2
0 q T

´´

1
1
0

¯¯

“ p 2
1 q T

´´

1
0
0

¯¯

“ p 1
1 q.

Now we need to find the coordinate vectors of these with respect to basis C. We can
solve 3 inhomogeneous systems at once:

˜

1 3

2 1

ˇ

ˇ

ˇ

ˇ

ˇ

2

0

ˇ

ˇ

ˇ

ˇ

ˇ

2

1

ˇ

ˇ

ˇ

ˇ

ˇ

1

1

¸

ÝÑ

˜

1 3

0 ´5

ˇ

ˇ

ˇ

ˇ

ˇ

2

´4

ˇ

ˇ

ˇ

ˇ

ˇ

2

´3

ˇ

ˇ

ˇ

ˇ

ˇ

1

´1

¸

ÝÑ

˜

1 3

0 1

ˇ

ˇ

ˇ

ˇ

ˇ

2
4
5

ˇ

ˇ

ˇ

ˇ

ˇ

2
3
5

ˇ

ˇ

ˇ

ˇ

ˇ

1
1
5

¸

ÝÑ

˜

1 0

0 1

ˇ

ˇ

ˇ

ˇ

ˇ

´ 2
5

4
5

ˇ

ˇ

ˇ

ˇ

ˇ

1
5
3
5

ˇ

ˇ

ˇ

ˇ

ˇ

2
5
1
5

¸
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So this tells us that
˜

2

0

¸

“ ´
2

5

˜

1

2

¸

`
4

5

˜

3

1

¸

so

«˜

2

0

¸ff

C

“

˜

´ 2
5

4
5

¸

˜

2

1

¸

“
1

5

˜

1

2

¸

`
3

5

˜

3

1

¸

so

«˜

2

1

¸ff

C

“

˜

1
5
3
5

¸

˜

1

1

¸

“
2

5

˜

1

2

¸

`
1

5

˜

3

1

¸

so

«˜

1

1

¸ff

C

“

˜

2
5
1
5

¸

So we put it together into a matrix:

CrT sB “

˜

´ 2
5

1
5

2
5

4
5

3
5

1
5

¸

How do we check if the answer is correct? We cannot check it as easily as when we use
the standard basis. The check happens in the three lines where we can work out if the
vectors are really those given linear combinations of the basis C.

Example 8.46: Not lectured: this is an extra worked example for you, but we don’t have time to
go through everything in the lectures.
To see why we want to use the same basis on both sides when looking at maps T : V ÝÑ V , consider
the dilation map T pvq “ 3v on R3. The matrix for T in the standard basis is

A “

¨

˚

˝

3 0 0

0 3 0

0 0 3

˛

‹

‚

“ 3I,

which visibly looks like “multiplying by 3”. If we take basis B “

!

v1 “

´

1
1
1

¯

, v2 “

´

1
1
0

¯

, v3 “

´

1
0
0

¯)

for both sides, then T has matrix

A “

¨

˚

˝

3 0 0

0 3 0

0 0 3

˛

‹

‚

“ 3I

again, because T pv1q “ 3v1, etc. But if we look at the matrix for T using B for the domain (source)
and the standard matrix for the codomain (target), then T has the matrix

C “

¨

˚

˝

3 3 3

3 3 0

3 0 0

˛

‹

‚

because T pv1q “

´

3
3
3

¯

, T pv2q “

´

3
3
0

¯

and T pv3q “

´

3
0
0

¯

. This matrix is not as useful, because we

do not see the very important property that “T is just multiplyling by 3”.
We can even make T have matrix

D “

¨

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‚

if we take the standard basis for the domain and the basis consisting of 3 times the standard vectors
for the codomain. That does not tell us much about what the map does, other than that it is an
isomorphism.
This is the reason that when we have a map T : V ÝÑ V from one vector space to itself, we (almost
always) want to use the same basis on both sides.
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Proposition 8.47: (Matrix of composite is product of matrices.)
If T : U ÝÑ V and S : V ÝÑ W are two linear maps, and B1, B2, B3 are bases for U, V,W
respectively, then

B3
rS˝T sB1

“ B3
rSsB2 B2

rT sB1
.

In words: composition of maps corresponds to multiplying matrices. (We’ve chosen the placement
of the bases as subscripts so that this composition comes out looking visually helpful.)

Proof. We apply the definition of the matrix representing a linear map. Given as exercise in
Lectures. You should either try to work it out yourself, to practice if you understand the definition
(best learning opportunity), or follow the proof below, making sure you understand it (second
best).
Suppose B1 “ tu1, . . . , ulu, B2 “ tv1, . . . , vmu and B3 “ tw1, . . . , wnu, and write D “ B3

rS˝T sB1
,

C “ B3rSsB2 and A “ B2rT sB1 . So we want to show D “ CA. I’m deliberately trying to avoid
having a matrix B, so as not to confuse it with the bases.
The kth column of the matrix D “ B3

rS˝T sB1
is dk “ rSpT pukqqsB3

. In words: the image under
S˝T of the kth basis vector of U , written in the basis of W . We know by how matrix multiplication
works that dk “ Cak C times the kth column of A (c.f. Definition of matrix multiplication,
Chapter 1).
Using how linear maps work as matrix transformations (Lemma 8.42), we know that rT pukqsB2 “ ak
in words, the coordinate vector of the image of the kth basis vector of U is the kth column of matrix
A. And further, Cak “ B3

rSsB2
rT pukqsB2

“ rSpT pukqsB3
. So the image of uk under the composite

S˝T is indeed the kth column of the product CA, which means by definition D “ CA. □

Proposition 8.48: (Isos have invertible matrices.)
Let T : V ÝÑ W be linear and B a basis of V , C a basis for W . Then T is an isomorphism
if and only if the matrix for T with respect to B and C is invertible. In this case,

BrT´1sC “ p CrT sBq´1.

Given as exercise.

Explanatory proof: We will fix some notation first. Let B “ tv1, v2, . . . , vnu and C “

tw1, w2, . . . , wnu be the bases (recall iso if and only if same dimension), and let v P V be v “

λ1v1 ` ¨ ¨ ¨ ` λnvn in terms of the basis vectors. So the coordinate vector for v is rvsB “

˜

λ1

...
λn

¸

.

Let A “ CrT sB be the matrix for T , and have columns A “

´

a1 a2 ¨ ¨ ¨ an

¯

.

The main idea of the proof is this: we view v as the vector

˜

λ1

...
λn

¸

and T as multiplying by the

matrix A. Then to “undo T”, we have to multiply by the matrix A´1.
Suppose T is an isomorphism, then it has an inverse T´1 : W ÝÑ V , with T ˝T´1 “ idW and
T´1

˝T “ idV . Let the inverse have matrix D “ BrT´1sC . Since the matrix of a composite is the
product of the matrices (Prop. 8.47), and the identity map is represented by the identity matrix
with respect to any basis, we have DA “ AD “ In. So D “ A´1, and A is invertible.

Conversely, suppose A is invertible. Then for any column vector

˜

µ1

...
µn

¸

, we can calculate the

column vector A´1

˜

µ1

...
µn

¸

“

˜

λ1

...
λn

¸

. Then, if w “ µ1w1 ` ¨ ¨ ¨ ` µnwn in W , define S : W ÝÑ V as

Spwq “ λ1v1 ` ¨ ¨ ¨ ` λnvn, i.e. rSpwqsB “ A´1rwsC “

˜

λ1

...
λn

¸

.
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We want to show that S is the inverse of T . To work out SpT pvqq and T pSpwqq, we first work out
what coordinate vectors they correspond to. We know

A´1

˜

µ1

...
µn

¸

“

˜

λ1

...
λn

¸

, so

A

˜

λ1

...
λn

¸

“

˜

µ1

...
µn

¸

.

So to work out SpT pvqq, we have to find the coordinate vector of T pvq, apply A´1 to it, which
gives us the coordinate vector of SpT pvqq.
We have

rSpT pvqqsB “ A´1rT pvqsC “ A´1ArvsB “ rvsB .

Writing out the full column vectors:

rSpT pvqqsB “ A´1

˜

µ1

...
µn

¸

“ A´1A

˜

λ1

...
λn

¸

“

˜

λ1

...
λn

¸

.

And conversely

rT pSpwqqsC “ ArSpwqsB “ AA´1rwsC “ rwsC .

Writing out the full column vectors:

rT pSpwqqsC “ A

˜

λ1

...
λn

¸

“ AA´1

˜

µ1

...
µn

¸

“

˜

µ1

...
µn

¸

.

So if v “ λ1v1 ` ¨ ¨ ¨ `λnvn, then SpT pvqq “ λ1v1 ` ¨ ¨ ¨ `λnvn “ v, and if w “ µ1w1 ` ¨ ¨ ¨ `µnwn,
then T pSpwqq “ µ1v1 ` ¨ ¨ ¨ ` µnvn “ w. So S “ T´1 and T is an isomorphism. □

Higher-level proof: This is just turning the above proof into short-hand. It’s really the
same proof.
Recall the isomorphism E1 : V ÝÑ Rn from “dimension n means iso to Rn”, Theorem 8.38. So we
also have E2 : W ÝÑ Rn. If A is the matrix for T with respect to bases B and C and we write
A also for the matrix transformation A : Rn ÝÑ Rn, then T “ E´1

2 AE1. (To calculate T , turn a
vector into its coordinate vector, multiply by A, and turn the resulting coordinate vector into an
element of W .) This also gives A “ E2TE

´1
1 .

V
T ,2

E1

��

W

E2

��
Rn

A
,2 Rn

If T is an isomorphism, then T´1 also has a matrix C representing it, and we have CA “

E1T
´1TE´1

1 “ E1idV E
´1
1 “ In and AC “ E2TT

´1E´1
2 “ E2idWE´1

2 “ In, so C “ A´1.
Conversely, if A is invertible, then the inverse of T is S “ E´1

1 A´1E2. (To work out S of some
vector, turn the vector into a coordinate vector, multiply it by A´1, and turn it into an element
of V .)
We have

ST “ E´1
1 A´1E2E

´1
2 AE1 “ E´1

1 A´1AE1 “ E´1
1 InE1 “ idV ,

and

TS “ E´1
2 AE1E

´1
1 A´1E2 “ E´1

2 AA´1E2 “ E´1
2 InE2 “ idW ,

so indeed S “ T´1.
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We can summarise the whole situation like this:

V
T ,2

E1

��

idV

�%
W

E2

��

T´1
,2 V

E1

��
Rn

A
,2

In

9DRn

A´1

,2 Rn

and W
T´1

,2

E2

��

idW

�%
V

E1

��

T ,2 W

E2

��
Rn

A´1

,2

In

9DRn

A
,2 Rn

□

Study guide.
Concept review

˛ Linear maps as matrix transformations.
˛ When to use different bases for domain and codomain, and when to use the same basis.
˛ Identity and dilation have the same matrix with respect to any basis.
˛ Matrix of composite map and matrix of inverse map.

Skills

˛ Find the matrix for a given linear map with respect to given bases.
˛ Find the coordinate vector of the image of some vector under a linear map.

F. Base change

We will now look at how to switch between coordinate vectors with respect to different bases:

Definition 8.49: Let V be a finite dimensional vector space, and B1 and B2 be bases of V .
Then the matrix for the identity map id: V ÝÑ V with respect to B1 for the domain and B2

for the codomain,
P “ PB1ÝÑB2

“ B2
ridsB1

is called the base change matrix from basis B1 to basis B2.

Note that any base change matrix is automatically an invertible matrix, because the identity map
id is an isomorphism (c.f. “Isos have invertible matrices”, Proposition 8.48).
We define base change matrices this way because they satisfy:

Proposition 8.50: (Base change)
Let V be a finite dimensional vector space, and let B1 and B2 be bases of V . Then for any
v P V ,

rvsB2
“ PB1ÝÑB2

rvsB1
.

In words: to change the coordinate vector for v with respect to basis B1 into the coordinate vector
of v with respect to basis B2, we multiply it by the base change matrix.

Proof. Because of how the linear map id: V ÝÑ V is viewed as a matrix transformation (c.f.
Lemma 8.42), we have

ridpvqsB2 “ B2ridsB1rvsB1 ,

which exactly says

rvsB2 “ PB1ÝÑB2rvsB1 .

□
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Example 8.51: Consider the standard basis E “ te1 “ p 1
0 q, e2 “ p 0

1 qu for R2, and the basis
B “ tv1 “ p 1

1 q, v2 “ p 1
0 qu. Then the base change matrix PBÝÑE “ P has as first column the first

basis vector of basis B, written in the basis E. So

PBÝÑE “

˜

1 1

1 0

¸

We saw earlier that if rvsE “ p
x1
x2

q, then rvsB “ p
x2

x1´x2
q. Then

P rvsB “

˜

1 1

1 0

¸˜

x2

x1 ´ x2

¸

“

˜

x2 ` px1 ´ x2q

x2

¸

“

˜

x1

x2

¸

“ rvsE .

Slogan: “Base change matrix from any ‘other’ basis to standard basis is easy to write down:
the columns are just the ‘other’ basis vectors.”

To work out the base change matrix the other way round, i.e. PEÝÑB , we have to write e1 and e2
in terms of v1 and v2:

e1 “ p 1
0 q “ v2 so re1sB “ p 0

1 q

e2 “ p 0
1 q “ v1 ´ v2 so re2sB “

`

1
´1

˘

and so the base change matrix is

PEÝÑB “

˜

0 1

1 ´1

¸

,

and indeed

PEÝÑBrvsE “

˜

0 1

1 ´1

¸˜

x1

x2

¸

“

˜

x2

x1 ´ x2

¸

“ rvsB .

Notice that PEÝÑBPBÝÑE “ p 1 0
0 1 q “ I2 and PBÝÑEPEÝÑB “ I2, so PEÝÑB “ P´1

BÝÑE . This is
always the case.

Lemma 8.52: (Backwards base change has inverse base change matrix.)
Let V be a finite dimensional vector space, and let B1 and B2 be bases of V . Then

PB2ÝÑB1
“ P´1

B1ÝÑB2
.

Proof. Let dimV “ n. Since the matrix of a composite is the product of the matrices
(Prop. 8.47), we know that

PB2ÝÑB1PB1ÝÑB2 “ B2ridsB2 B2ridsB1 “ B1rid˝idsB1 “ In

and similarly
PB1ÝÑB2PB2ÝÑB1 “ In,

so PB2ÝÑB1
“ P´1

B1ÝÑB2
as claimed. □

This helps us to work out a base change matrix for more complicated bases.

Example 8.53: Consider the basis B “ tv1 “ p 1
1 q, v2 “ p 1

2 qu for R2. Calculating the base change
matrix PEÝÑB in this case is not completely straight-forward: we cannot just see what e1 and e2
are in terms of these new basis vectors v1 and v2. But we saw earlier that PBÝÑE is easy:

PBÝÑE “

˜

1 1

1 2

¸

.

And so we know that the base change matrix the other way round is the inverse of this matrix,
which we know how to calculate. So

PEÝÑB “ P´1
BÝÑE “

˜

2 ´1

´1 1

¸

,
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and indeed

e1 “ p 1
0 q “ 2p 1

1 q ´ p 1
2 q “ 2v1 ´ v2

e2 “ p 0
1 q “ ´p 1

1 q ` p 1
2 q “ ´v1 ` v2.

Proposition 8.54: (Base change for matrices)
Let T : V ÝÑ W be a linear map between finite-dimensional vector spaces, and let B1, B2 be
two bases for V , C1, C2 two bases for W . Then

C1rT sB1 “ P´1
C1ÝÑC2 C2rT sB2PB1ÝÑB2 .

Proof.

basis B1 V
C1

rT sB1 ,2

PB1ÝÑB2

��

W

PC1ÝÑC2

��

basis C1

basis B2 V
C2

rT sB2

,2 W basis C2

We know that for v P V , we have

C1
rT sB1

rvsB1
“ rT pvqsC1

and C2
rT sB2

rvsB2
“ rT pvqsC2

.

And using the base change matrices, we have

rvsB2
“ PB1ÝÑB2

rvsB1
and rT pvqsC2

“ PC1ÝÑC2
rT pvqsC1

.

Putting these together, we get two expressions for rT pvqsC1 : first we get

C2
rT sB2

rvsB2
“ C2

rT sB2
PB1ÝÑB2

rvsB1

“ rT pvqsC2
“ PC1ÝÑC2

rT pvqsC1

which implies

rT pvqsC1 “ P´1
C1ÝÑC2 C2rT sB2PB1ÝÑB2rvsB1 .

But by definition we also have

rT pvqsC1
“ C1

rT sB1
rvsB1

,

so C1rT sB1 “ P´1
C1ÝÑC2 C2rT sB2PB1ÝÑB2 as required. □

You need to check carefully that the order of matrices matches what bases are being used:

C1
rT sB1

“ P´1
C1ÝÑC2 C2

rT sB2
PB1ÝÑB2

can be applied to a coordinate vector given in basis B1.
Then PB1ÝÑB2

can act on it: it takes a coordinate vector in basis B1 and turns it into a coordinate
vector with basis B2. Then C2

rT sB2
can act on that one: it takes a coordinate vector with basis

B2 and gives you the image of that vector, written in basis C2. Then P´1
C1ÝÑC2

turns that into a
coordinate vector with basis C1. And on the other side of the equation, C1rT sB1 just does it all in
one step: takes a coordinate vector with basis B1 and gives you the image of that vector written
in basis C1.
As we in general have different spaces for domain and codomain, the base change formula looks
like

A1 “ Q´1A2P.

with different base change matrices P and Q, in the different vector spaces.

Example 8.55: We worked out matrices for the projection S : R2 ÝÑ R with S pp
x1
x2

qq “ x1:

A “

´

1 0
¯

with respect to the standard basis for R2 and standard basis 1 for R,

C “

´

1 1
¯

with respect to basis B “ tv1 “ p 1
1 q, v2 “ p 1

0 qu for R2 and standard basis for R.
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We worked out the base change matrix

P “ PEÝÑB “

˜

0 1

1 ´1

¸

,

and indeed,

A “ CP

´

1 0
¯

“

´

1 1
¯

˜

0 1

1 ´1

¸

(here Q “ 1 is a 1 ˆ 1 identity matrix, as we are not changing the basis in R).

Corollary 8.56: (Base change for square matrices)
If T : V ÝÑ V and B1, B2 are bases for V , then

rT sB1
“ P´1

B1ÝÑB2
rT sB2

PB1ÝÑB2
.

Proof. It follows immediately from the previous result, we are just using the same bases for
both sides of the map. □

In nicer notation, if the base change matrix is P “ PB1ÝÑB2
, then

A1 “ P´1A2P.

Here we have the same base change in both domain and codomain.
This relationship between matrices is very important, and so we give it a name:

Definition 8.57: Two square matrices A and B are similar if they represent the same linear
map with respect to different bases, or equivalently if there exists an invertible P such that
A “ P´1BP .

Example 8.58: We saw that the map

T pp
x1
x2

qq “
`

x1`x2
´2x1`4x2

˘

.

has matrices

A “

˜

1 1

´2 4

¸

with respect to the standard basis,

C “

˜

2 0

0 3

¸

with respect to basis B “ tv1 “ p 1
1 q, v2 “ p 1

2 qu .

We worked out the base change matrix

P “ PEÝÑB “

˜

2 ´1

´1 1

¸

with P´1 “

˜

1 1

1 2

¸

and indeed,

A “ P´1CP
˜

1 1

´2 4

¸

“

˜

1 1

1 2

¸˜

2 0

0 3

¸˜

2 ´1

´1 1

¸

.

So A and C are similar matrices.

Similar matrices have several properties in common.
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Proposition 8.59: Similar matrices have the same determinant.

Proof. If A “ P´1BP with P invertible, then

detA “ detpP´1BP q “ detP´1 detB detP “ detpP´1P qdetB “ det In detB “ detB. □

Example 8.60: From before, we have

detA “

∣∣∣∣∣ 1 1

´2 4

∣∣∣∣∣ “ 6

detC “

∣∣∣∣∣2 0

0 3

∣∣∣∣∣ “ 6.

Proposition 8.61: Similar matrices have the same trace.

Proof. Exercise. Use trpABq “ trpBAq, which you should prove first (by looking at elements).
□

So as any matrix which represents a linear map has the same determinant, we can define

Definition 8.62: Let T : V ÝÑ V be a linear map from a finite dimensional vector space to
itself. Then the determinant of T is the determinant of any matrix which represents T with
respect to some basis B. The trace of T is the trace of any matrix which represents T .

By the previous results, these is a well-defined concepts, as all these matrices have the same
determinant and trace. Note that this only works for a linear map from one vector space to itself,
in the same way as determinant and trace are only defined for square matrices.

Study guide.
Concept review

˛ Base change matrix, inverse of base change matrix.
˛ Base change from “other” basis to standard basis.
˛ Base change for matrices (both square and not square).
˛ Relationship between different matrices for the same linear map.
˛ Similar matrices.
˛ Determinant and trace of a linear map.

Skills

˛ Find a base change matrix from one basis to another (either directly, or using an inverse
matrix).

˛ Find the correct equation for two matrices for the same linear map and the corresponding
base change matrices.

˛ Find the determinant and trace of a linear map.

G. Linear Maps: Study guide collation

Just putting together all the study guides from the different sections.

Concept review.

˛ Linear map.
˛ Domain and codomain.
˛ Composition of maps.
˛ Zero map, identity map.
˛ Linear map is determined by values on a basis.
˛ Build up a repertoire of and intuition for linear maps.
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˛ Kernel and image of linear map.
˛ Properties of kernel and image.
˛ Rank and nullity of linear map.
˛ Relationship between rank and nullity of a linear map.
˛ Injective and surjective functions.
˛ Behaviour of injectivity and surjectivity under composition.
˛ Isomorphisms and inverses.
˛ Relationship between injectivity and surjectivity for maps from a vector space to itself.
˛ Uniqueness of inverses.
˛ Inverse of a composite.
˛ Conditions for vector spaces to be isomorphic.
˛ Linear maps as matrix transformations.
˛ When to use different bases for domain and codomain, and when to use the same basis.
˛ Identity and dilation have the same matrix with respect to any basis.
˛ Matrix of composite map and matrix of inverse map.
˛ Base change matrix, inverse of base change matrix.
˛ Base change from “other” basis to standard basis.
˛ Base change for matrices (both square and not square).
˛ Relationship between different matrices for the same linear map.
˛ Similar matrices.
˛ Determinant and trace of a linear map.

Skills.

˛ Determine whether a function is a linear map.
˛ Find a formula for a linear map given values on a basis.
˛ Find the kernel and image of a linear map.
˛ Find bases for kernel and image of a linear map.
˛ Find rank and nullity of a linear map.
˛ Determine whether a map is injective or surjective.
˛ Find inverses to isomorphisms.
˛ Find an isomorphism between vector spaces of the same dimension.
˛ Find the matrix for a given linear map with respect to given bases.
˛ Find the coordinate vector of the image of some vector under a linear map.
˛ Find a base change matrix from one basis to another (either directly, or using an inverse
matrix).

˛ Find the correct equation for two matrices for the same linear map and the corresponding
base change matrices.

˛ Find the determinant and trace of a linear map.
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CHAPTER 9

Eigenvectors and Eigenvalues

A. Definitions

We have seen that linear maps can be represented as matrices with respect to different bases. We
will now look at finding a very nice basis for a linear map. We will start with a definition. In this
whole chapter, we will only consider linear maps from a space to itself, corresponding to square
matrices.

Definition 9.1: If T : V ÝÑ V is a linear map, then v ‰ 0 P V is called an eigenvector with
eigenvalue λ if T pvq “ λv.

So an eigenvector is a vector whose “direction” is not changed by the linear map. As T is linear,
if v is an eigenvector, then any multiple of v is also an eigenvector with the same eigenvalue:
T pµvq “ µT pvq “ µλv “ λpµvq.

CAREFUL: We do not count v “ 0 as an eigenvector, because T p0q “ 0 “ λ0 for any λ. So it is
important to remember that eigenvectors have to be non-zero.

Examples 9.2: a) For any scalar λ, the map T pvq “ λv has any vector as an eigenvector, with
eigenvalue λ.

b) We saw earlier the map

T pp
x1
x2

qq “
`

x1`x2
´2x1`4x2

˘

.

This satisfies

T pp 1
1 qq “ p 2

2 q “ 2p 1
1 q

T pp 1
2 qq “ p 3

6 q “ 3p 1
2 q

so we have eigenvector p 1
1 q with eigenvalue 2 and eigenvector p 1

2 q with eigenvalue 3.
c)

[Kernel means 0 as eigenvalue] For any map T : V ÝÑ V , if v P KerpT q, then T pvq “

0 “ 0v, so any non-zero vector in the kernel of T is an eigenvector with eigenvalue 0. This
means that 0 is an eigenvalue of T if and only if T has non-trivial kernel, if and only if T
is not injective.

d) Consider the map

T
´´

x1
x2
x3

¯¯

“

´

´2x3
x1`2x2`x3

x1`3x3

¯

which has matrix

A “

¨

˚

˝

0 0 ´2

1 2 1

1 0 3

˛

‹

‚

,

and let

v1 “

´

´1
0
1

¯

, v2 “

´

0
1
0

¯

, v3 “

´

´2
1
1

¯

.
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We work out

T pv1q “

´

´2
0
2

¯

“ 2v1

T pv2q “

´

0
2
0

¯

“ 2v2

T pv3q “

´

´2
1
1

¯

“ v3

so T has eigenvectors v1 and v2 with eigenvalue 2, and v3 with eigenvalue 1. Note that any
linear combination of v1 and v2 is also an eigenvector with eigenvalue 2:

T pav1 ` bv2q “ aT pv1q ` bT pv2q “ 2av1 ` 2bv2 “ 2pav1 ` bv2q.

This leads us to a general result:

Proposition 9.3: (Eigenspace)
Given a linear map T : V ÝÑ V with some eigenvalue λ, then the set of eigenvectors of λ,
together with the 0 vector, form a subspace Vλ of V .

Proof. Exercise: we have seen all the ingredients we need in the examples above. □

Definition 9.4: This subspace Vλ is called an eigenspace of T .

Careful! We have a separate eigenspace per eigenvalue, not one eigenspace for everything together!
This is very important!

Examples 9.5: In the same examples as above, we have:

a) T : V ÝÑ V with T pvq “ λv has Vλ “ V : the whole space V is one eigenspace.
b) The map

T pp
x1
x2

qq “
`

x1`x2
´2x1`4x2

˘

has eigenspaces

V2 “ xp 1
1 qy “ Spanp 1

1 q

V3 “ xp 1
2 qy “ Spanp 1

2 q.

c)
[Kernel is 0-eigenspace] For any map T : V ÝÑ V , we have V0 “ KerpT q.

d) The map

T
´´

x1
x2
x3

¯¯

“

´

´2x3
x1`2x2`x3

x1`3x3

¯

with

v1 “

´

´1
0
1

¯

, v2 “

´

0
1
0

¯

, v3 “

´

´2
1
1

¯

has eigenspaces

V2 “ xv1, v2y “ Spanpv1, v2q

V1 “ xv3y.

Corollary 9.6: (Isos via eigenvalues) T : V ÝÑ V is an isomorphism if and only if 0 is
not an eigenvalue of T .

Proof. V0 “ KerpT q, so KerpT q “ 0 if and only if 0 is not an eigenvalue. □
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Study guide.
Concept review

˛ Eigenvalues, eigenvector.
˛ Eigenspace.
˛ Connection of kernel with eigenvalues/eigenspaces.
˛ Connection of isomorphisms and eigenvalues.

Skills

˛ (next section)

B. Finding eigenvalues: characteristic polynomial

So how do we find eigenvalues and eigenvectors? Recall

Lemma 9.7: (Determinant finds isos.)
If V is finite dimensional, a linear map T : V ÝÑ V is an isomorphism if and only if detpT q ‰ 0.
Equivalently, if A is a matrix for T with respect to some basis, then T is an isomorphism if
and only if detpAq ‰ 0.

Proof. Recall that detpT q is defined as detpAq for any matrix A representing T , so the above
two statements really are the same. This is Theorem 3.55. □

Corollary 9.8: The same T as above has KerpT q “ 0 if and only if detpT q ‰ 0.

Proof. By “check one get one free for isos” (Proposition 6.13), we know that T is injective
if and only if it is surjective. And by “injectivity via kernels” (Proposition 8.24) we know that
KerpT q “ 0 if and only if T is injective. □

So now we can prove:

Theorem 9.9: (Eigenvalues are the roots of the characteristic polynomial.)
If T : V ÝÑ V is a linear map, then λ is an eigenvalue of T if and only if detpλid ´ T q “ 0.
Equivalently, if A is a matrix for T with respect to some basis, then λ is an eigenvalue of T
if and only if detpλI ´ Aq “ 0.

Proof. We have

Dv ‰ 0 such that T pvq “ λv

ô Dv ‰ 0 such that λv ´ T pvq “ 0

ô Dv ‰ 0 such that pλid ´ T qpvq “ 0

ô Dv ‰ 0 such that v P Kerpλid ´ T q

ô Kerpλid ´ T q ‰ 0

ô detpλid ´ T q “ 0

To justify the second assertion, we have to show that it does not matter which matrix representation
we choose. Suppose A and B are two matrices for T with respect to different bases. Then there is
a base change matrix P (which is invertible) so that A “ P´1BP . Then

detpλI ´ Aq “ detpλI ´ P´1BP q

“ detpP´1pλI ´ BqP q

“ detP´1 detpλI ´ BqdetP

“ detpP´1P qdetpλI ´ Bq

“ detpλI ´ Bq.

So this quantity is not dependent on which matrix representation of T we choose.
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Really what is behind this is that determinant does not change under base change, and the identity
map has the identity matrix with respect to any basis, so if we change the basis for T to go from
A to B, we might as well change the basis for id as well, and we still get the identity matrix. □

Definition 9.10: Given T : V ÝÑ V , the characteristic polynomial of T is χT ptq “

detptid ´ T q, or if A is a matrix representing T , then χT ptq “ χAptq “ detptI ´ Aq.

So the theorem above shows us that λ is an eigenvalue of T if and only if λ is a root of the charac-
teristic polynomial of T . We also saw above that it does not matter which matrix representation
of T we take.
So

Fact 9.11: The eigenvalues are exactly the roots of the characteristic polynomial.

Why is detptI ´ Aq a polynomial?

Example 9.12: If A “

˜

a b

c d

¸

is 2 ˆ 2, then

detptI ´ Aq “

∣∣∣∣∣t ´ a ´b

´c t ´ d

∣∣∣∣∣ “ pt ´ aqpt ´ dq ´ bc “ t2 ´ pa ` dqt ` ad ´ bc

is a polynomial of degree 2.
As we defined determinants “by induction” as linear combinations of determinants of smaller
matrices, this inductively shows that detptI ´ Aq is a polynomial in t of degree n, where A is an
n ˆ n matrix.
So any n ˆ n matrix has at most n eigenvalues.

Here are a few more examples for you of working out eigenvalues:

Examples 9.13: a) not lectured, extra worked example
If

A “

˜

1 1

´2 4

¸

then

χAptq “ detptI ´ Aq “

∣∣∣∣∣t ´ 1 ´1

`2 t ´ 4

∣∣∣∣∣
“ pt ´ 1qpt ´ 4q ` 2 “ t2 ´ 5t ` 6 “ pt ´ 2qpt ´ 3q

so the eigenvalues of A are 2 and 3, as we saw above.
b) Consider

R “

˜

0 ´1

1 0

¸

.

If we first think of this geometrically: if we view it as a map R2 ÝÑ R2, then the first standard
basis vector e1 “ p 1

0 q is mapped to p 0
1 q “ e2, and e2 is mapped to ´e1. So this is a rotation in

R2 by 90˝ anti-clockwise. We should expect it to have no eigenvalues.
We work out the characteristic polynomial:

χRptq “ detptI ´ Rq “

∣∣∣∣∣ t 1

´1 t

∣∣∣∣∣ “ t2 ` 1

This has no real roots, so indeed it has no real eigenvalues. (We will talk about complex
eigenvalues later.
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Warning: Don’t forget to change the signs of the entries in the matrix when you write down
the entries of detptI ´ Aq.

For some matrices, we can just read off the eigenvalues from the diagonal.

Proposition 9.14: (Eigenvalues of diagonal and triangular matrices)
If A is

(i) a diagonal matrix, or
(ii) an upper triangular matrix, or
(iii) a lower triangular matrix,

then the eigenvalues of A are exactly the diagonal entries.

Proof. By Proposition 3.49, the determinant of an upper or lower triangular matrix is the
product of diagonal entries. So if A has diagonal entries aii, then tI ´ A has diagonal entries
pt ´ aiiq, so χAptq “ detptI ´ Aq “ pt ´ a11qpt ´ a22q ¨ ¨ ¨ pt ´ annq, which has roots the diagonal
entries of A. This applies to any of the three cases. □

Proposition 9.15: Similar matrices have the same eigenvalues and characteristic polynomial.

Proof. If A and B are similar, there exists an invertible P such that A “ P´1BP , so

χAptq “ detptI ´ Aq

“ detptI ´ P´1BP q

“ detpP´1ptI ´ BqP q

“ detP´1 detptI ´ BqdetP

“ detpP´1P qdetptI ´ Bq

“ det I detptI ´ Bq

“ χBptq.

So they have the same characteristic polynomial. Since the eigenvalues are exactly the roots of the
characteristic polynomial, A and B also have the same eigenvalues.
You can also think of it this way: A and B are similar if and only if they represent the same linear
map, and characteristic polynomial and eigenvalues are properties of linear maps, so they don’t
change when we look at the same linear map. □

So now we want to know how to find eigenvectors. Using a similar argument as for eigenvalues, we
see that v ‰ 0 is an eigenvector for T with eigenvalue λ if and only if pλid ´ T qpvq “ 0.

Lemma 9.16: (Eigenspace as kernel)
For a linear map T : V ÝÑ V , the eigenspace Vλ “ Kerpλid ´ T q.

Proof. From the above, we see that v P Vλ if and only if v P Kerpλid ´ T q. □

So since we already know how to find elements of and/or bases for a kernel, we can now find
elements of and/or bases for eigenspaces.
So, to summarise:

To find eigenvalues and eigenvectors of a matrix A, we

˛ calculate the characteristic polynomial χAptq “ detptI ´ Aq;
˛ factorise the characteristic polynomial to find its roots, which are the eigenvalues.
˛ For each eigenvalue λ separately, we find a basis of KerpλI ´ Aq.
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Examples 9.17: a) Consider

A “

¨

˚

˝

0 0 ´2

1 2 1

1 0 3

˛

‹

‚

for which we worked out
χAptq “ pt ´ 2qpt ´ 2qpt ´ 1q,

so the eigenvalues are 2 and 1.
Eigenvectors for λ “ 2:

A ´ 2I “

¨

˚

˝

´2 0 ´2

1 0 1

1 0 1

˛

‹

‚

ÝÑ

¨

˚

˝

0 0 0

1 0 1

0 0 0

˛

‹

‚

so a basis for V2 is v1 “

´

1
0

´1

¯

, v2 “

´

0
1
0

¯

. This means that a general eigenvector for eigenvalue

2 is
´

s
t

´s

¯

.

Eigenvectors for λ “ 1:

A ´ I “

¨

˚

˝

´1 0 ´2

1 1 1

1 0 2

˛

‹

‚

ÝÑ

¨

˚

˝

1 0 2

0 1 ´1

0 0 0

˛

‹

‚

so a basis for V1 is v3 “

´

´2
1
1

¯

.

b) Note that eigenvalues need not be integers - we just often have them as integers in exercises so
that it’s easier to enter in Numbas. In real life, in fact the matrices may not even have integer
entries of course.

Let A “

˜

0 3

4 0

¸

, then χAptq “

∣∣∣∣∣ t ´3

´4 t

∣∣∣∣∣ “ t2´12 “ pt´2
?
3qpt`2

?
3q, so the eigenvalues

are 2
?
3 and ´2

?
3.

So we now work out the eigenvectors: for λ “ 2
?
3, we find the kernel of

A ´ 2
?
3I “

˜

´2
?
3 3

4 ´2
?
3

¸

ÝÑ

˜

1 ´
?
3
2

0 0

¸

so the eigenvector is

˜?
3
2

1

¸

, or if we want it without fractions, we can use

˜?
3

2

¸

.

For λ “ ´2
?
3, we find the kernel of

A ` 2
?
3I “

˜

2
?
3 3

4 2
?
3

¸

ÝÑ

˜

1
?
3
2

0 0

¸

so the eigenvector is

˜

´
?
3

2

¸

.

Proposition 9.18: (Eigenvalues and eigenvectors of powers of a matrix)
If an nˆ n matrix A has eigenvector v ‰ 0 with eigenvalue λ, then Ak has eigenvector v with
eigenvalue λk, for any natural number k.

Proof. If Av “ λv, then A2v “ Apλvq “ λ2v, so by induction Akv “ Apλk´1vq “ λkv. □

Proposition 9.19: (Eigenvalues and eigenvectors of inverse)
If A is an invertible matrix, then A´1 has the same eigenvectors as A, with inverses of the
corresponding eigenvalues.

MA1114 Linear Algebra Page 137 prepared by Julia Goedecke, 2019



Chapter 9. Eigenvectors and Eigenvalues Diagonalisation

Proof. If Av “ λv for v ‰ 0, and A is invertible, then λ ‰ 0 (c.f. isos via eigenvalues,
Corollary 9.6). Then

Av “ λv

ô v “ λA´1v

ô
1

λ
v “ A´1v. □

Remark 9.20: Notice the difference between taking powers, say squaring, and taking the inverse.
Taking the inverse is a two-way operation, because pA´1q´1 “ A. So, if A is invertible, then v is
an eigenvector of A if and only if it is an eigenvector of A´1.
But for squaring, it is only a one-directional statement: if v is an eigenvector of A, then v is also
an eigenvector of A2. But A2 may have other eigenvectors, which A does not have.

For example: A “

˜

´1 0

0 1

¸

has eigenvalues ´1 and 1, with eigenvectors e1 “

˜

1

0

¸

for ´1 and

e2 “

˜

0

1

¸

for 1. So there are two separate one-dimensional eigenspaces for A.

But A2 “

˜

1 0

0 1

¸

, which has eigenvalue 1, and every vector is an eigenvector. So for example

v “

˜

1

1

¸

is an eigenvector for A2, but it is not an eigenvector for A. The eigenspaces have been

combined to be for the same eigenvalue, which gives a 2-dimensional eigenspace - this is the sum
of the two previous eigenspaces (which is bigger than the union).
This corresponds to the fact that you can’t undo squaring: you can’t tell if the 1 came from p´1q2

or p`1q2.

Study guide.
Concept review

˛ Characteristic polynomial, and its link to eigenvalues.
˛ Eigenvalues of diagonal and triangular matrices.
˛ Relationship of eigenvalues of similar matrices.
˛ Eigenspace as kernel of a particular linear map.
˛ Eigenvalues and eigenvectors of powers or inverses of a map/matrix.

Skills

˛ Find the characteristic polynomial of a map/matrix.
˛ Find the eigenvalues of a map/matrix.
˛ Find the eigenvectors of a map/matrix.
˛ Find the eigenvalues of an inverse matrix.

C. Diagonalisation

We started by saying that we want to find a nice basis for a linear map. Eigenvectors help with
that.

Proposition 9.21: (Basis of eigenvectors gives diagonal matrix.)
If v1, v2, . . . , vn is a basis for V consisting of eigenvectors for T : V ÝÑ V , then the matrix for
T with respect to this basis is diagonal.
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Proof. Suppose T pvkq “ λkvk (where the λk are not necessarily distinct). Then using the
definition of a matrix representing a linear map, we get

A “

¨

˚

˚

˚

˚

˚

˚

˝

λ1 0 0 ¨ ¨ ¨ 0

0 λ2 0 ¨ ¨ ¨ 0
...

. . .
...

0 ¨ ¨ ¨ 0 λn´1 0

0 ¨ ¨ ¨ 0 0 λn

˛

‹

‹

‹

‹

‹

‹

‚

which is diagonal. □

This is the nicest form we can expect from a linear map: it tells us exactly in which directions the
linear map dilates (stretches/shrinks) vectors by exactly how much.
However, we can’t always expect to get such a nice form. We’ve already had one example where
there were no real eigenvalues. But that is not the only problem.

Example 9.22: Consider the map which has matrix

A “

¨

˚

˝

1 ´3 2

´1 ´5 6

2 ´2 0

˛

‹

‚

with respect to the standard basis. Then

χAptq “

∣∣∣∣∣∣∣
t ´ 1 3 ´2

1 t ` 5 ´6

´2 2 t

∣∣∣∣∣∣∣ “ t2pt ` 4q.

So 0 and ´4 are eigenvalues. We work out eigenvectors, first for λ “ 0:
¨

˚

˝

1 ´3 2

´1 ´5 6

2 ´2 0

˛

‹

‚

ÝÑ

¨

˚

˝

1 ´3 2

0 ´8 8

0 4 ´4

˛

‹

‚

ÝÑ

¨

˚

˝

1 0 ´1

0 1 ´1

0 0 0

˛

‹

‚

(doing row operations to reduce to echelon form)

so a basis for V0 is
´

1
1
1

¯

.

For λ “ ´4: (swap first two rows for easier calculations)

A ` 4I “

¨

˚

˝

5 ´3 2

´1 ´1 6

2 ´2 4

˛

‹

‚

ÝÑ

¨

˚

˝

1 1 ´6

0 ´8 32

0 ´4 16

˛

‹

‚

ÝÑ

¨

˚

˝

1 1 ´6

0 1 ´4

0 0 0

˛

‹

‚

ÝÑ

¨

˚

˝

1 0 ´2

0 1 ´4

0 0 0

˛

‹

‚

so a basis for V´4 is
´

2
4
1

¯

.

We only have 2 linearly independent eigenvectors, so we cannot hope to make a basis for all of R3

out of these.

The aim now is to investigate this issue, and come up with some situations where we know we will
be able to find a basis of eigenvectors.

Definition 9.23: Given an eigenvalue λ for T , the algebraic multiplicity of λ is the power
of the linear factor pt´ λq in the characteristic polynomial, and the geometric multiplicity
of λ is the dimension of the eigenspace Vλ.

Example 9.24: For

A “

¨

˚

˝

1 ´3 2

´1 ´5 6

2 ´2 0

˛

‹

‚
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eigenvalue 0 has algebraic multiplicity 2 and geometric multiplicity 1, and eigenvalue ´4 has
algebraic and geometric multiplicity 1.

We see immediately that

If λ is an eigenvalue, then

˛ algebraic multiplicity ě 1 and
˛ geometric multiplicity ě 1.

Otherwise λ would not even be an eigenvalue. We will see later that geometric multiplicity ď

algebraic multiplicity.
We saw that similar matrices have the same eigenvalues and characteristic polynomials, so they
have the same algebraic multiplicities. We can’t expect them to have exactly the same eigenvectors,
but they do have something in common about their eigenspaces.

Proposition 9.25: Similar matrices have the same eigenspace dimensions, i.e. the same geo-
metric multiplicities.

Proof. Let A “ P´1BP for P invertible. We have already proved that A and B have the
same eigenvalues. Let Vλ be the λ-eigenspace of A, and Wλ be the λ-eigenspace of B. Then

Av “ λv

ô P´1BPv “ λv

ô BpPvq “ λpPvq.

So v is an eigenvector for A with eigenvalue λ if and only if Pv is an eigenvector for B with
eigenvalue λ. Given a basis v1, . . . , vk of Vλ, then Pv1, . . . , Pvk are all in Wλ, and as P is an
invertible map, these vectors are still linearly independent. You can view this sentence as a
“hidden exercise”: is it clear to you why the conclusion of this sentence is true? If not, see if you
can work through it.
So dimWλ ě dimVλ. We can do the same with a basis w1, . . . , wl for Wλ and P´1, giving
dimVλ ě dimWλ. So the dimensions are the same. □
What is really going on is that the restriction of P to Vλ gives an isomorphism P 1 : Vλ ÝÑ Wλ.
If you’re interested in making that more precise:
Consider the restriction of TP to Vλ, i.e. S : Vλ ÝÑ V with Spvq “ Pv, but we’re only allowed to
use v from Vλ, not all of V . We worked out above that then ImS Ď Wλ, i.e. Spvq lands in Wλ.
Then you can work out that KerS “ KerP X Vλ. This is always the case for any restriction. So
KerS “ 0, and S is an isomorphism from Vλ to its image. Then by rank-nullity, rpSq “ dimVλ,
but we also know ImS ď Wλ, so dimVλ ď dimWλ. Then you can either do it all again with A,
B swapped, or you can show directly that all of Wλ is in the image of S by saying w P Wλ has
P´1w P Vλ, so S is surjective onto Wλ.

Let’s start with a definition of what we are aiming for.

Definition 9.26: A linear map T : V ÝÑ V is diagonalisable if there exists a basis for V
such that the matrix for T with respect to this basis is a diagonal matrix.
An n ˆ n matrix A is diagonalisable if it is similar to a diagonal matrix.

Recall that this means that there is some invertible P (a base change matrix) such that A “

P´1DP , where D is diagonal. Another way to put diagonalisability is

Theorem 9.27: A linear map T : V ÝÑ V is diagonalisable if and only if there is a basis of
V consisting of eigenvectors of T .

Proof. We already saw above (Prop. 9.21) that if we have a basis of eigenvectors then the
corresponding matrix is diagonal. Conversely, if v1, . . . , vn is a basis which gives us a diagonal
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matrix with entries λ1, . . . , λk on the diagonal, then T pvkq “ λkvk by definition of a matrix
representing a linear map, so each vk is an eigenvector of T . □

Let us make a first step towards achieving this goal.

Proposition 9.28: (Evectors for distinct evalues)
For a linear map T : V ÝÑ V , if v1, . . . , vk are eigenvectors with distinct eigenvalues, then
they are linearly independent.

Proof. We have T pviq “ λivi, with all λi distinct. Suppose that v1, . . . , vk are linearly
dependent (so we are aiming for a contradiction). As the set of one vector v1 is linearly independent
(as v1 ‰ 0), there must be some largest m such that v1, . . . , vm are linearly independent, but
v1, . . . , vm, vm`1 are linearly dependent. Because of our assumuption, m` 1 ď k. Then there exist
scalars such that

µ1v1 ` ¨ ¨ ¨ ` µmvm ` µm`1vm`1 “ 0.

Applying T to this vector gives

µ1λ1v1 ` ¨ ¨ ¨ ` µmλmvm ` µm`1λm`1vm`1 “ 0.

If we now multiply the first equation by λm`1 and subtract that from the second equation, we get

µ1pλ1 ´ λm`1qv1 ` ¨ ¨ ¨ ` µmpλm ´ λm`1qvm ` 0vm`1 “ 0.

But as all the λi are distinct, and v1, . . . , vm are linearly independent, this implies that µ1 “ ¨ ¨ ¨ “

µm “ 0. Then we also get µm`1 “ 0, which contradicts our assumption that v1, . . . , vm`1 are
linearly dependent.
So in fact, v1, . . . , vk are linearly independent. □
Summary: Suppose the vectors are linearly dependent, and look at the “switch”: where does it
go from lin indep set to lin dep set. Have a dependecy relation, and eliminate the last vector by
combining “apply T” and “multiply by λm`1” and subtracting both. This gives contradiction.

Examples 9.29: a)

A “

˜

1 1

´2 4

¸

has eigenvalues 2 and 3, so the corresponding eigenvectors p 1
1 q and p 1

2 q are linearly independent.
b)

A “

¨

˚

˝

5 1 3

0 ´1 0

0 1 2

˛

‹

‚

has eigenvalues ´1 with evector
´

0
3

´1

¯

, 2 with evector
´

1
0

´1

¯

and 5 with evector
´

1
0
0

¯

. So the

previous result tells us that the set of these three vectors is linearly independent. As it is a set
of three vectors, this makes it a basis of R3 (by “check one get one free for bases”, Prop. 6.13).

c)

A “

¨

˚

˝

0 0 ´2

1 2 1

1 0 3

˛

‹

‚

,

has eigenvalue 2 with eigenvectors v1 “

´

´1
0
1

¯

and v2 “

´

0
1
0

¯

, and eigenvalue 1 with eigenvector

v3 “

´

´2
1
1

¯

. So the previous result tells us that v1, v3 are linearly independent, and also v2, v3

are linearly independent. The result does not tell us anything about the eigenvectors for the
same eigenvalue 2, but we chose them to be linearly independent.
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Corollary 9.30: If dimV “ n and T : V ÝÑ V has n distinct eigenvalues, then T is diagon-
alisable.

Examples 9.31: Examples a) and b) above have distinct eigenvalues, so they are diagonalisable.
c) does not have distinct eigenvalues, so this result does not tell us whether it is diagonalisable or
not.

But even when we have some repeated eigenvalues, we have a chance of diagonalisation, as we
saw in an earlier example. When does it happen that we don’t have enough linearly independent
eigenvectors? Clearly then some of the eigenspaces are not big enough. But how big can they get?

Proposition 9.32: (geometric mult ď algebraic mult)
For a linear map T : V ÝÑ V and an eigenvalue λ of T , the geometric multiplicity of λ is at
most the algebraic multiplicity of λ.

Proof. Let Vλ be the corresponding eigenspace, and let v1, . . . , vk be a basis for Vλ. So k is
the geometric multiplicity. Extend v1, . . . , vk to a basis v1, . . . , vk, vk`1, . . . , vn of V (possible by
Theorem 6.15). Then let A be the matrix for T with respect to this particular basis. As the first
k basis vectors are eigenvectors, the first k columns of A have only λ in the diagonal entry and the
rest is 0. We don’t know anything about the remaining columns of A.

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

λ 0 0 ¨ ¨ ¨ 0 ˚ ¨ ¨ ¨ ˚

0 λ 0 ¨ ¨ ¨
... ˚ ¨ ¨ ¨ ˚

...
. . .

...
...

...
...

. . . 0
...

...

0 ¨ ¨ ¨ 0 λ ˚ ¨ ¨ ¨ ˚

0 ¨ ¨ ¨ 0 ˚ ¨ ¨ ¨ ˚

... ¨ ¨ ¨
... ˚ ¨ ¨ ¨ ˚

0 ¨ ¨ ¨ 0 ˚ ¨ ¨ ¨ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

˜

λIk ˚

0 ˚

¸

Through consecutively expanding in the first k columns, we see that

χAptq “ pt ´ λqkpptq

for some polynomial pptq of degree n´k. So λ has algebraic multiplicity of at least k. Since similar
matrices have the same characteristic polynomials and hence the same algebraic multiplicities, this
proves that

geometric multiplicity of λ ď algebraic multiplicity of λ. □

Summary: “Do as best we can” by taking basis for eigenspace as part of the whole basis, then
check what power pt ´ λq has in the characteristic polynomial for that matrix.

Example 9.33: You can check in all the examples we’ve had (also in the Workbook) that this is
true.

So we see that to have a chance of getting a basis of eigenvectors, we would need the geometric
multiplicities to be equal to the algebraic multiplicities, as the algebraic multiplicities add up to
at most n.
We saw earlier that eigenvectors for distinct eigenvalues form a linearly independent set. Now we
want to show that if we have a basis for each eigenspace and put them all together, then we still
have a linearly independent set.
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Proposition 9.34: (Combining eigenspace bases)
Let T : V ÝÑ V be a linear map. Let B1, . . . , Bk be bases for distinct eigenspaces of T . Then
the union of these forms a linearly independent set in V .

Sketch of proof: This proof is very similar to the proof of “evectors for distinct evalues”,
Prop. 9.28. We just have to make a few tweaks. So I’m going to just give you a sketch, you can
fill in the details.
To fix some notation, let the ith eigenspace have eigenvalue λi, and let Bi “ tvi1, v

i
2, . . . , v

i
li

u. So we
put a superscript which tells us which basis the vector is in, and the subscript counts the vectors
in a given basis, and Bi has li elements. Notice that no vector can appear in two bases at once,
since all these vectors are eigenvectors and each eigenspace has a different eigenvalue.
Supppose the set of all vectors is linearly dependent. As before, this means there is some m
such that the first m vectors on the list are linearly independent, but the first m ` 1 are linearly
dependent. So we have some dependence relation between the vectors. If the last vector on the list
is the first vector in a new eigenspace basis, we can use the same method as before to show that
all coefficients must be 0. So let’s assume the last vector on the list is somewhere in the middle of
an eigenspace basis:

µ1v
1
1 ` ¨ ¨ ¨ ` µm´j`1v

i
1 ` ¨ ¨ ¨ ` µmvij ` µm`1v

i
j`1 “ 0

Then applying T to this, and subtracting λi times the original equation, we get

µ1pλ1 ´ λiqv
1
1 ` ¨ ¨ ¨ ` µm´jpλi´1 ´ λiq ` µm´j`1pλi ´ λiqv

i
1 ` ¨ ¨ ¨ ` µm`1pλi ´ λiqv

i
j`1 “ 0,

i.e. all the contributions from the same eigenspace as the very last vector disappear. But we know
that the vectors that still have non-zero coefficients are linearly independent, so µ1 “ ¨ ¨ ¨ “ µm´j “

0. This leaves us with

µm´j`1v
i
1 ` ¨ ¨ ¨ ` µmvij ` µm`1v

i
j`1 “ 0,

but now these vectors are all in the basis Bi, so they are also linearly independent, so all the
remaining µs are also zero.
So the set of all bases of the distinct eigenspaces is linearly independent. □

Example 9.35: Example c) we had before:

A “

¨

˚

˝

0 0 ´2

1 2 1

1 0 3

˛

‹

‚

,

has eigenvalue 2 with eigenvectors v1 “

´

´1
0
1

¯

and v2 “

´

0
1
0

¯

, and eigenvalue 1 with eigenvector

v3 “

´

´2
1
1

¯

. As we chose v1 and v2 to be a basis of the 2-eigenspace, this result tells us that

v1, v2, v3 is a linearly independent set (and so a basis for R3, by “check one get one free for bases”,
Prop. 6.13.)

Theorem 9.36: (Diagonalisability via geometric multiplicities)
A linear map T : V ÝÑ V with dimV “ n is diagonalisable if and only if the sum of all
geometric multiplicities of the distinct eigenvalues is n.

Proof. If T is diagonalisable, we have a basis of eigenvectors. Each eigenvector is in some
eigenspace basis, so the sum of geometric multiplicities of distinct eigenvalues is at least n. But since
geometric multiplicities are at most the algebraic multiplicities, the sum of geometric multiplicities
is also at most n, so it is equal to n.
Conversely, if the sum of geometric multiplicities is n, then the union of all the bases of all the
distinct eigenspaces has size n, so (by Prop. 9.34) is a linearly independent set of size n, hence a
basis by “check one get on free for bases”, Proposition 6.13. □
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As well as knowing whether a matrix is diagonalisable, we might also want to know what the
diagonal form is, and what the base change matrix is. We can in fact already infer that from the
results we’ve discussed so far, but let us summarise it:

Theorem 9.37: (Diagonal form and eigenvector base change)
If T : V ÝÑ V is diagonalisable, then it’s diagonal form D has all eigenvalues of T on the
diagonal.
Furthermore, if A is the matrix for T in the standard basis (for V where this makes sense),
and P is the matrix whose columns are the eigenvectors of T , corresponding in order to the
diagonal entries of D, then D “ P´1AP .

Proof. Essentially the whole statement follows directly from Theorem 9.27: T is diagonalis-
able iff there is a basis of eigenvectors. To see that we have the base change the correct way round:
if E is the standard basis and B the eigenvector basis, then P “ PBÝÑE , so

rT sB “ PEÝÑBrT sEPBÝÑE

i.e. D “ P´1AP. □

Examples 9.38: a) Revisiting

A “

˜

1 1

´2 4

¸

we have eigenvector base change matrix

P “

˜

1 1

1 2

¸

,

and then
˜

2 0

0 3

¸

“ D “ P´1AP.

b) Revisiting

A “

¨

˚

˝

5 1 3

0 ´1 0

0 1 2

˛

‹

‚

,

we have

P “

¨

˚

˝

0 1 1

3 0 0

´1 ´1 0

˛

‹

‚

and then
¨

˚

˝

´1 0 0

0 2 0

0 0 5

˛

‹

‚

“ D “ P´1AP.

c) Revisiting again

A “

¨

˚

˝

0 0 ´2

1 2 1

1 0 3

˛

‹

‚

,

we have eigenvector base change matrix

P “

¨

˚

˝

´1 0 ´2

0 1 1

1 0 1

˛

‹

‚
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and then
¨

˚

˝

2 0 0

0 2 0

0 0 1

˛

‹

‚

“ D “ P´1AP.

has eigenvalue 2 with eigenvectors v1 “

´

´1
0
1

¯

and v2 “

´

0
1
0

¯

, and eigenvalue 1 with eigenvector

v3 “

´

´2
1
1

¯

.

If we are working with real numbers, this is the best we can hope for, as we don’t know whether
the map has “enough eigenvalues”, i.e. whether the sum of algebraic multiplicities is n. We can do
a little better if we work with complex numbers, as we will see in the next section.

Having diagonalised a matrix not only tells us more about the properties of the linear map, but
also let’s us calculate powers more easily.

Proposition 9.39: (Powers via diagonalisation)
If A is a square matrix which is diagonalisable as A “ PDP´1 with D diagonal, then Ak “

PDkP´1, where Dk is diagonal with diagonal entries the kth powers of the diagonal entries
of D.

Proof. Exercise. □

Let’s have a little summary from the previous few sections of properties that are invariant under
base change, or properties that stay the same for similar matrices :

Properties of linear maps (i.e. Similarity invariants)

Property Explanation

Rank dimension of image

Nullity dimension of kernel

Invertibility or “being an isomorphism”

Determinant originally defined for matrix, now
shown detpP´1AP q “ detA.

Trace originally defined for matrix, now
shown trpP´1AP q “ trA.

Eigenvalues

Characteristic polynomial so also algebraic mult of evalues

Dimension of eigenspaces i.e. geometric mult of evalues

Study guide.
Concept review

˛ Diagonalisation of a map/matrix.
˛ Algebraic and geometric multiplicities of eigenvalues, and their relationships.
˛ Different conditions for a map/matrix to be diagonalisable.
˛ Relationship of eigenvectors for distinct eigenvalues.

Skills

˛ Work out the algebraic and geometric multiplicities of eigenvalues.
˛ Determine whether a map/matrix is diagonalisable.
˛ If the map is diagonalisable, find the diagonal form.
˛ If the map is diagonalisable, find a basis which consists of eigenvectors.
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D. Complex eigenvalues

All the theory we have developed about eigenvalues and eigenvectors of course works for linear
maps between complex vector spaces as well. If we are working over C, we should not expect
eigenvalues to be real. However, we saw that even for real vector spaces, sometimes a linear map
might not have real eigenvalues. But the main important fact about complex numbers is that

Very Important Fact 9.40: (Fundamental Theorem of Algebra)
Any polynomial can be factorised completely into linear factors over C.

(Not proved in this course. A very nice proof uses complex analysis.)
This means that we always have “enough eigenvalues” over C: any polynomial of degree n will
have exactly n linear factors, so (counting with multiplicity) it will have exactly n roots.

Example 9.41: Recall the 90˝ rotation

R “

˜

0 ´1

1 0

¸

with characteristic polynomial

χRptq “ detptI ´ Rq “

∣∣∣∣∣ t 1

´1 t

∣∣∣∣∣ “ t2 ` 1

This has no real roots, but it does have complex roots ˘i. If we now think of R2 via the Argand
plane as C, which is a real vector space of dimension 2, then

p
x
y q corresponds to x ` iy,

p 1
0 q corresponds to 1 ` 0i on the x-axis,

p 0
1 q corresponds to 0 ` i on the y-axis,

`

´1
0

˘

corresponds to ´ 1 ` 0i on the negative x-axis,

so under this correspondance Rp1q “ i and Rpiq “ ´1, which is exactly a 90˝ rotation of the
Argand plane.
So we can view complex eigenvalues of real matrices as telling us something about the rotational
properties of the matrix.
Similarly, the general rotation matrix

Rθ “

˜

cos θ ´ sin θ

sin θ cos θ

¸

which rotates the plane anti-clockwise by θ has characteristic polynomial

χRθ
ptq “

∣∣∣∣∣t ´ cos θ sin θ

´ sin θ t ´ cos θ

∣∣∣∣∣ “ pt ´ cos θq2 ` psin θq2 “ t2 ´ 2 cos θt ` 1

“ t2 ´ peiθ ` e´iθqt ` 1 “ pt ´ eiθqpt ´ e´iθq

so this has eigenvalues eiθ and e´iθ, which correspond to the complex numbers we get when we
rotate 1 by θ anti-clockwise or clockwise respectively.

Here we are using eiθ “ cos θ ` i sin θ, which gives cos θ “ eiθ`e´iθ

2 . In lectures we’ll draw an
Argand plane here to demonstrate.

We see that there are two complex eigenvalues in these examples but it’s only one rotation. We
can look at the reasons for this from several different viewpoints. One is this:
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Proposition 9.42: (Complex roots of real polynomials)
If p is a real polynomial, then any complex roots appear in complex conjugate pairs.

Proof. Let pptq “ ant
n ` an´1t

n´1 ` ¨ ¨ ¨ ` a1t ` a0 with all ai P R. Suppose that ppzq “ 0
for some particular z P C. Then we look at the complex conjugate z:

ppzq “ anz
n ` ¨ ¨ ¨ ` a1z ` a0

“ anzn ` ¨ ¨ ¨ ` a1z ` a0 because all ai P R, (so ai “ ai).

“ ppzq

“ 0.

So if z is a root then so is it’s complex conjugate. □

This shows that the roots have to come in these complex conjugate pairs. How you can make sense
of it geometrically:
Suppose you have R2 as the x, y-plane in R3. If you look at it “from above”, so from the side
which has positive z-values, then sending p 1

0 q to p 0
1 q looks like a 90˝ anti-clockwise rotation. But

if you look at it from below, then the same mapping now looks like a clockwise rotation.
So when we say that we view R2 as C, there are these two inbuilt “viewpoints”, and the charac-
teristic polynomial doesn’t know which we’ve chosen, so it has both these roots.

Here is a totally different way of looking at complex eigenvalues of real matrices:

Example 9.43: The same matrix R “

˜

0 ´1

1 0

¸

can also be viewed as a complex matrix, so as a

map C2 ÝÑ C2 (since R2 Ď C2). So given the eigenvalues ˘i, we can find complex eigenvectors:

R ´ iI “

˜

´i ´1

1 ´i

¸

R1 ˆi ,2

˜

1 ´i

1 ´i

¸

,2

˜

1 ´i

0 0

¸

so the eigenvector for i is v1 “ p i
1 q.

R ` iI “

˜

i ´1

1 i

¸

R1 ˆ ´ i ,2

˜

1 i

1 i

¸

,2

˜

1 i

0 0

¸

so the eigenvector for ´i is v2 “
`

´i
1

˘

.

If we view a real matrix as a complex matrix like this and find complex eigenvalues and eigenvectors,
we have

Proposition 9.44: (Complex evalues and evectors of real matrices)
If a real matrix A has a complex evalue λ with complex evector v, then λ is also an evalue of
A, with evector v.

Proof. We already know from the previous result that roots of the (real) characteristic poly-
nomial of A come in complex conjugate pairs. But even easier (recall that evector v ‰ 0):

Av “ λv

ô Av “ λv

ô Av “ λ ¨ v as A is real. □

Examples 9.45: a) We already saw the 90˝ rotation R.
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b) A general rotation

Rθ “

˜

cos θ ´ sin θ

sin θ cos θ

¸

with evalues λ “ eiθ “ cos θ ` i sin θ and e´iθ “ cos θ ´ i sin θ “ λ has evectors v1 “ p i
1 q and

v2 “
`

´i
1

˘

.

Here is the working out, but not lectured: we need to use eiθ “ cos θ ` i sin θ, which gives

cos θ “ eiθ`e´iθ

2 , and sin θ “ eiθ´e´iθ

2i . Don’t worry, you won’t be asked to do something this
involved in the exam. But you may well have to do it later in your life! Even possibly in your
job.

Rθ ´ eiθI “

˜

cos θ ´ eiθ ´ sin θ

sin θ cos θ ´ eiθ

¸

“

˜

´eiθ`e´iθ

2 ´ eiθ´e´iθ

2i
eiθ´e´iθ

2i
´eiθ`e´iθ

2

¸

ÝÑ

˜

´peiθ ´ e´iθq ´p´iqpeiθ ´ e´iθq

p´iqpeiθ ´ e´iθq ´peiθ ´ e´iθq

¸

using
1

i
“ ´i

ÝÑ

˜

´peiθ ´ e´iθq ´p´iqpeiθ ´ e´iθq

0 0

¸

using ip´iq “ 1

ÝÑ

˜

1 ´i

0 0

¸

using ip´iq “ 1

c) The real matrix

A “

˜

´2 ´1

5 2

¸

has characteristic polynomial pt ´ iqpt ` iq, and eigenvectors v1 “

˜

´ 2
5 ` 1

5 i

1

¸

for i and v2 “

˜

´ 2
5 ´ 1

5 i

1

¸

“ v1 for ´i.

The main result of this section is related to the fact that complex polynomials factor totally into
linear factors.

Theorem 9.46: (Complex diagonalisable iff algebraic = geometric mult)
Let T : V ÝÑ V be a linear map on a complex vector space V . Then T is diagonalisable
(over C) if and only if the geometric multiplicity of every eigenvalue agrees with the algebraic
multiplicity.

Proof. By the Fundamental Theorem of Algebra (Very Important Fact 9.40), the sum of
algebraic multiplicities is dimV “ n. By “Diagonalisability via geometric multiplicities” (The-
orem 9.36), we know that T is diagonalisable if and only if the geometric multiplicities add to n.
As geometric ď algebraic multiplicities (Prop. 9.32) and the sum of algebraic multiplicities is n,
this now happens if and only if geometric = algebraic multiplicity for every single eigenvalue. □

NOTE: This theorem is only true over the complex numbers! This means that the base change
matrix has to be allowed to be complex.

Later on you might learn also about minimal polynomials and Jordan normal form, which are very
good tools to know about a linear map and it’s eigenvalues, eigenspaces and diagonalisability. But
for us, this is all for now.

Study guide.
Concept review

˛ Complex evalue of 2 ˆ 2 matrix: shows rotational properties.
˛ Complex roots of real polynomials.
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˛ Complex evalues and evectors of real matrices.
˛ Fundamental Theorem of Algebra.

Skills

˛ Factorise polynomials into complex linear factors.
˛ Find complex evalues and evectors.
˛ Diagonalise a matrix over C.

E. Eigenvectors and Eigenvalues: Study guide collation

Just putting together all the study guides from the different sections.

Concept review.

˛ Eigenvalues, eigenvector.
˛ Eigenspace.
˛ Connection of kernel with eigenvalues/eigenspaces.
˛ Connection of isomorphisms and eigenvalues.
˛ Characteristic polynomial, and its link to eigenvalues.
˛ Eigenvalues of diagonal and triangular matrices.
˛ Relationship of eigenvalues of similar matrices.
˛ Eigenspace as kernel of a particular linear map.
˛ Eigenvalues and eigenvectors of powers or inverses of a map/matrix.
˛ Diagonalisation of a map/matrix.
˛ Algebraic and geometric multiplicities of eigenvalues, and their relationships.
˛ Different conditions for a map/matrix to be diagonalisable.
˛ Relationship of eigenvectors for distinct eigenvalues.
˛ Complex evalue of 2 ˆ 2 matrix: shows rotational properties.
˛ Complex roots of real polynomials.
˛ Complex evalues and evectors of real matrices.
˛ Fundamental Theorem of Algebra.

Skills.

˛ Find the characteristic polynomial of a map/matrix.
˛ Find the eigenvalues of a map/matrix.
˛ Find the eigenvectors of a map/matrix.
˛ Find the eigenvalues of an inverse matrix.
˛ Work out the algebraic and geometric multiplicities of eigenvalues.
˛ Determine whether a map/matrix is diagonalisable.
˛ If the map is diagonalisable, find the diagonal form.
˛ If the map is diagonalisable, find a basis which consists of eigenvectors.
˛ Factorise polynomials into complex linear factors.
˛ Find complex evalues and evectors.
˛ Diagonalise a matrix over C.
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Inner Products

A. Standard real inner product

You might know from R2 or R3 the concept of a dot product and the length of a vector:

˛ If x “ p
x1
x2

q and y “ p
y1
y2 q, then x ¨ y “ x1y1 ` x2y2.

˛ The length is }x} “
a

x2
1 ` x2

2 (using Pythagoras).

It is very useful to view the dot product as a matrix product of a row vector times a column vector:

x ¨ y “

´

x1 x2

¯

˜

y1

y2

¸

“ x1y1 ` x2y2

by the general matrix multiplication rules.
These concepts are easily generalised to Rn:

Definition 10.1: The standard inner product (also called Euclidean inner product)
on Rn is a function x´,´y : Rn ˆ Rn ÝÑ R defined by

xv, wy “ vTw “

´

v1 v2 ¨ ¨ ¨ vn

¯

¨

˚

˚

˚

˚

˝

w1

w2

...

wn

˛

‹

‹

‹

‹

‚

“ v1w1 ` v2w2 ` ¨ ¨ ¨ ` vnwn “

n
ÿ

i“1

viwi.

The norm (or length or magnitude) of a vector in Rn is defined as

}v} “
a

xv, vy.

Examples 10.2: a) If v “

ˆ

2
´1
3

´5

˙

then }v} “
a

22 ` p´1q2 ` 32 ` p´5q2q “
?
39.

b) If v is as above and w “

ˆ

´3
´4
1
0

˙

, then xv, wy “ 2 ¨ p´3q ` p´1q ¨ p´4q ` 3 ¨ 1 ` p´5q ¨ 0 “ 2.

c) It is up to you whether you prefer writing xv, wy or vTw. HOWEVER be careful with the use
of v ¨ w, the “dot product”, as this can sometimes lead to confusion. It is MUCH SAFER to
use vTw, in the matrix multiplication form.

From the idea of length, we might expect this norm to satisfy certain properties, such as:

˛ The norm of any vector is non-negative.
˛ The zero vector is the only vector with norm 0.
˛ Multiplying a vector by a scalar multiplies the norm by the absolute value of that scalar.

We might also expect something that resembles a triangle inequality.

We will also see some important propties of the inner product, which are: The inner product

˛ is linear in each entry.
˛ is symmetric.
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˛ encodes orthogonality.

Let’s start with the the inner product properties, since we defined the norm using the inner product.

Theorem 10.3: (Inner product properties)
The standard inner product x´,´y : Rn ˆ Rn ÝÑ R satisfies:

(i) xλu ` µv,wy “ λxu,wy ` µxv, wy and xv, λu ` µwy “ λxv, uy ` µxv, wy (bilinear)
(ii) xv, wy “ xw, vy (symmetric)
(iii) xv, vy ě 0, and xv, vy “ 0 ô v “ 0 (positive definite)

Proof. (i) Matrix multiplication is linear (Prop. 1.67). This gives

xv, λu ` µwy “ vT pλu ` µwq “ λvTu ` µvTw “ λxv, uy ` µxv, wy.

We will get the other statement once we also have symmetry.
(ii) xv, wy “ vTw “ pvTwqT “ wT v “ xw, vy. We are using: transpose of 1 ˆ 1-matrix (i.e. a

number) does not change it.

Or write it out explicitely as xv, wy “
n
ř

i“1

viwi.

(iii) xv, vy “
n
ř

i“1

vivi “
n
ř

i“1

pviq
2. Squares are always non-negative, and a sum of non-negative

terms is non-negative.
Also xv, vy “ v21 ` ¨ ¨ ¨ ` v2n “ 0 if and only if each summand is 0 separately, as they are

all non-negative (so we can’t cancel anything out). This is the case if and only if v “ 0. □

Remark 10.4: The bilinear property is related to two linear maps we already know:

˛ Given v P Rn, we can view v as a p1 ˆ n)-matrix vT , and then the corresponding linear
map is TvT : Rn ÝÑ R with TvT pwq “ vTw “ xv, wy. This corresponds to linearity in the
second entry of the inner product.

˛ The actual process of “viewing v as vT ” is in itself a linear map p´qT : Rn ÝÑ M1,n,
sending a vector to a matrix (and a matrix of course in itself also represents a linear
map). (For interest, linking to the future:) You will later see this as a map

v ÞÝÑ xv,´y P V ˚ “ t linear maps V ÝÑ Ru.

Here V ˚ is called the dual space of V . This linear map corresponds to linearity in the
first entry.

Example 10.5: Not lectured, explaining above remark.

a) Given v “

´

1
2
1

¯

, we have the linear map

TvT : Rn ÝÑ R with TvT pwq “ w1 ` 2w2 ` w3.

b) Any vector

ˆ

v1
v2
...
vn

˙

can be seen as the p1 ˆ nq-matrix
´

v1 v2 . . . vn

¯

. In some sense we are

saying “taking the transpose (of a matrix) is a linear operation”.

The inner product properties also immediately give us the properties for the norm:

Corollary 10.6: (Properties of norm)
The standard norm on Rn satisfies:

(i) }v} ě 0.
(ii) }v} “ 0 ô v “ 0.
(iii) }λv} “ |λ|}v}.

Proof. Exercise: use inner product properties. □

It is often useful to remember
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}v}2 “ xv, vy.

Now that we have something like length, we can talk about “making vectors a unit length”.

Definition 10.7: A unit vector is a vector of norm 1. Given v P Rn, if v ‰ 0, we can
normalise v to the unit vector 1

}v}
v.

Examples 10.8: a) The standard basis vectors are all unit vectors.

b) If v “

ˆ

2
´1
3

´5

˙

then its normalisation is u “ 1
}v}

v “ 1?
39

ˆ

2
´1
3

´5

˙

.

c) If v “

˜ 1
1
...
1

¸

P Rn, then its normalisation is 1?
n
v.

In R2 (and by extension in R3), we can talk about angles between vectors. Using a diagram in R2,
we can see that, given two unit vectors x “ p 1

0 q and y “ p
y1
y2 q, we have

x1y1 ` x2y2 “ y1 “ cos θ.

If x “ p
x1
x2

q is a general vector, then by rotating the plane we still get

x1y1 ` x2y2 “ cos θ,

where θ is the angle between the two vectors which satisfies 0 ď θ ď 180˝.
Draw a diagram to illustrate, and let x1 “ cos θ1, x2 “ sin θ1, y1 “ cos θ2, y2 “ sin θ2. Then the
angle θ between the vectors is p˘qpθ1 ´ θ2q. And

x1y1 ` x2y2 “ cos θ1 cos θ2 ` sin θ1 sin θ2 “ cospθ1 ´ θ2q “ cos θ.

In particular we see that

x1y1 ` x2y2 “ 0 ô x and y are perpendicular to each other.

While it does not make entire sense to generalise angles to Rn, we are very much interested in this
generalisation of vectors being perpendicular.

Definition 10.9: Two vectors v, w P Rn are called orthogonal exactly when xv, wy “ 0.

Examples 10.10: a) The standard basis vectors are pairwise orthogonal.
b) v1 “ p 1

1 q and v2 “
`

1
´1

˘

are orthogonal in R2:

xv1, v2y “ 1 ¨ 1 ` 1 ¨ p´1q “ 0.

Of course in R2, there is only one vector which is orthogonal to a given vector (up to linear
multiples). This is not true in Rn:

c) The vector
´

1
1
1

¯

P R3 is orthogonal to any vector which satisfies x1 `x2 `x3 “ 0, so for example

v1 “

´

1
0

´1

¯

, v2 “

´

0
1

´1

¯

, v1 ` v2 “

´

1
1

´2

¯

and any other linear combination of v1, v2. You can think of this as the plane orghogonal to
´

1
1
1

¯

.

d) Similarly in R4, the vector

ˆ

1
1
1
1

˙

is orthogonal to any vector satisfying x1 ` x2 ` x3 ` x4 “ 0,

which you can think of as a hyperplane with basis

v1 “

ˆ

1
0
0

´1

˙

, v2 “

ˆ

0
1
0

´1

˙

, v3 “

ˆ

0
0
1

´1

˙

.
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Here “hyper”plane means “space of dimension one less than ambient space”. We call it hy-
perplane because our most comfortable space is three-dimensional, and in that case we get a
plane.

e) This generalises to Rn.

Exercise 10.11: Find the vectors which are orthogonal to

˜

1
3
2

´1
4

¸

P R5. Hint: use an equation

like we did above.

Using this inner product, we can also determine vectors.

Proposition 10.12: (Inner product detects 0)
For given v P Rn, xv, wy “ 0 for all w P Rn if and only if v “ 0.

Proof. Since we have xv, wy “ 0 for all w P Rn, also xv, vy “ 0, which gives v “ 0. The other
direction was already proved in “inner product properties” (Theorem 10.3). □

Example 10.13: a) Suppose you want to know “which vectors are orthogonal to everything
in R5”. We are looking for v P R5 such that xv, wy “ 0 for all w P R5. So the previous
result tells us: only 0.

b) If we have v1 and v2 such that xv1, wy “ xv2, wy for all w P Rn, then we can conclude:

xv1, wy “ xv2, wy ñ xv1 ´ v2, wy “ 0 ñ v1 ´ v2 “ 0 ñ v1 “ v2.

So if we ask: can the line x1 “ x2 (i.e. the line generated by the vector u “ p 1
1 q) in R2 have

several vectors which are orthogonal to it? We might know that v1 “
`

1
´1

˘

is such a vector.
Suppose v2 is another. Then

˛ For w “ λp 1
1 q, i.e. on the line, we have xv1, wy “ xv2, wy “ 0.

˛ We have xv1, v1y “ 2, and xv2, v1y “ a, some real number.
˛ We know that p 1

1 q and v1 form a basis of R2, so for any v P R2, we can write v “ µ1u`µ2v1,
and then

xv2, vy “ µ1xv2, uy ` µ2xv2, v1y “ 0 ` aµ2

and xv1, vy “ µ1xv1, uy ` µ2xv1, v1y “ 0 ` 2µ2.

Then xa
2v1, vy “ xv2, vy for all v P R2. So v2 “ a

2v1 must be a scalar multiple of v1. So we
have only “one direction” of vector which is orthogonal to the given line.
Of course we could have found this out more easily as well. I just wanted to demonstrate
a kind of way this could be used.

We will now see a very useful property of the inner product which implies the triangle inequality
for the norm.

Theorem 10.14: (Cauchy-Schwarz inequality)
For u, v P Rn, we have

xu, vy2 ď }u}2}v}2

(ñ |xu, vy| ď }u}}v} and xu, vy ď }u}}v}).
Equality holds if and only if u “ µv for some µ P R. (I.e. only when u, v are parallel.)

Proof. Consider xu ` tv, u ` tvy ě 0, which is a quadratic polynomial in t, and non-negative
as the inner product is positive definite (see Theorem 10.3). This is the main idea and super trick
of this proof! Give it the awe it deserves :-)
We have

xu ` tv, u ` tvy “ xu, uy ` txu, vy ` txv, uy ` t2xv, vy “ }u}2 ` 2txu, vy ` }v}2t2.
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The roots of this quadratic are

´2xu, vy ˘
a

p2xu, vyq2 ´ 4}u}2}v}2

2}v}2
.

Since we know the quadratic is non-negative, it has exactly one or zero roots, so the discriminant
must be non-positive (either discriminant is 0: one real root, or discriminant negative: only complex
roots, no real roots), i.e.

4xu, vy2 ´ 4}u}2}v}2 ď 0

which gives
xu, vy2 ď }u}2}v}2.

Then, taking square roots, we get |xu, vy| ď }u}}v}, but as xu, vy ď |xu, vy|, we can also say

xu, vy ď }u}}v}.

To get equality in the discriminant, we need xu ` tv, u ` tvy “ 0, which happens if and only if
u ` tv “ 0, i.e. u “ ´tv for some t. □

Using this, we can prove:

Corollary 10.15: (Triangle inequality for norm)
Given v, w P Rn, then }v ` w} ď }v} ` }w}.

Proof.

}v ` w}2 “ xv ` w, v ` wy

“ }v}2 ` 2xv, wy ` }w}2

ď }v}2 ` 2}v}}w} ` }w}2 using Cauchy-Schwarz

“ p}v} ` }w}q2

which implies
}v ` w} ď }v} ` }w}

as both sides are non-negative. □

Study guide.
Concept review

˛ Standard (Euclidean) Inner Product, norm, and the connection between the two.
˛ Inner product properties: it’s bilinear, symmetric, positive definite.
˛ Norm properties that we expect from a “length”.
˛ Unit vectors, normalisation of vectors.
˛ Orthogonal vectors. Hyperplane orthogonal to a vector.
˛ Inner product detects 0.
˛ Cauchy-Schwarz inequality.
˛ Triangle inequality of norm.

Skills

˛ Work out norm of a given vector.
˛ Work out inner product of two given vectors.
˛ Use properties of inner product for expansion/manipulation.
˛ Normalise a vector to be a unit vector.
˛ Determine whether vectors are orthogonal.

B. General inner products

The standard (Euclidean) inner product is not the only one on Rn. We can generalise this concept.

Definition 10.16: Let V be a real vector space. Then a (real) inner product on V is a
function x´,´y : V ˆ V ÝÑ R satisfying:
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(i) xλu ` µv,wy “ λxu,wy ` µxv, wy and xv, λu ` µwy “ λxv, uy ` µxv, wy (bilinear)
(ii) xv, wy “ xw, vy (symmetric)
(iii) xv, vy ě 0, and xv, vy “ 0 ô v “ 0 (positive definite)

A vector space V together with an inner product is called an inner product space.

So instead of proving these properties, we just ask them, and call any such function which satisfies
them an inner product.

Examples 10.17: a) Obviously the Euclidean inner product is an example.
b) [Weighted inner product] Let D be a diagonal matrix with positive diagonal entries

d1, d2, . . . , dn ą 0. Then

xv, wy “ vTDw “ d1v1w1 ` d2v2w2 ` ¨ ¨ ¨ ` dnvnwn

is also an inner product. The first two points are easy to check using vTDw and matrix
multiplication properties. To see it is positive definite:

xv, vy “ d1v
2
1 ` ¨ ¨ ¨ ` dnv

2
n ě 0

because the squares are ě 0 and the di ą 0. This sum is 0 if and only if all summands are 0,
so as the di are strictly positive, this happens if and only if v “ 0.

Such an inner product can be useful in a situation or problem where not all the different
directions are “equally good” for something. For example, if you want to move something,
moving it in one direction might be harder or more expensive or more time-consuming than in
another direction. A weighted inner product can incorporate such situations.

c) A variation of this is to take a real symmetric matrix A with positive eigenvalues, and take
xv, wy “ vTAw. (The proof of this relies on the fact that any real symmetric matrix is diagon-
alisable, which we haven’t proved yet. C.f. Theorem 10.32.)

With the stated result, this is then really the same as a weighted inner product, just that
the weightings are not necessariliy in the x and y directions (or equivalent), but in some other
directions, given by the eigenvectors of the matrix used.

d) If V is the vector space of n ˆ n matrices, then

xA,By “ trpATBq

is an inner product.
Exercise: check the three properties in the definition of inner product in this example.

Remember: trpCT q “ trpCq. For positive definiteness, you’ll have to look at actual elements.
e) Let V “ Pn. Then

xp, qy “

ż 1

´1

ppxqqpxqdx

is an inner product.

(i)
ş1

´1
pap1pxq ` bp2pxqqqpxqdx “ a

ş1

´1
p1pxqqpxqdx ` b

ş1

´1
p2pxqqpxqdx, and similarly in the

second entry.

(ii)
ş1

´1
ppxqqpxqdx “

ş1

´1
qpxqppxqdx.

(iii)
ş1

´1
ppxqppxqdx ě 0 because the integrand is non-negative on all of r´1, 1s. Why does

ş1

´1
ppxqppxqdx “ 0 imply p “ 0? As ppxq2 ě 0 on r´1, 1s, we can first conclude that

ppxq “ 0 on r´1, 1s. But why is it then the zero-polynomial? A polynomial of degree n
has at most n roots, but we have found a whole interval r´1, 1s where it is 0, so it must
be the zero polynommial.

The integral inner product also works on the vector space of integrable (or continuous or differ-
entiable or infinitely differentiable) functions defined on a given interval (if we make the integral
go over the whole integral as well).

f) Let V be a suitable space of random variables. Then

xX,Y y “ EpXY q

is an inner product.
Exercise: prove this, using properties of expectation from probability.
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Not lectured: Taking covariance of two random variables also gives an inner product. Check
it with covariance facts.

Such inner product spaces are very important and used in all sorts of areas, ranging from pure
maths via numerical methods needed in mathematical modelling, to quantum physics.

Because of the way we proved everything in the previous section, only using the properties of
bilinearity, symmetry and positive definiteness, all the results still hold. So we can

˛ define a norm corresponding to the inner product, which satisfies all the same properties;
˛ have unit vectors and normalise with respect to the inner product;
˛ have orthogonal vectors with respect to the inner product;
˛ use Cauchy-Schwarz with respect to the inner product.

Examples 10.18: a) Such different inner products give rise to different lengths. For example, for

a weighted inner product on R2 with D “

˜

3 0

0 2

¸

, we have

xu, vy “ 3u1v1 ` 2u2v2

and, for example,

∥ p 1
0 q ∥ “

?
3, ∥ p 0

1 q ∥ “
?
2.

This can be useful if, for example, we want to include how difficult it is to travel or move
something in a certain direction, and so want to weight the “length” or inner product so that
two vectors with same norm represent travel with the same time or the same amount of energy,
or something similar.

This gives rise to strange “unit circles” as well. In lectures, we’ll draw one.
b) Cauchy-Schwarz still holds for these different kind of inner products, so for the integral one, we

have
ż 1

´1

ppxqqpxqdx ď

d

ż 1

´1

ppxq2dx

ż 1

´1

qpxq2dx.

and also
EpXY q ď

a

EpX2qEpY 2q.

Who would have thought!

Study guide.
Concept review

˛ General inner product.
˛ Examples of weighted inner product, matrix inner product, integral inner product.

Skills

˛ Work out norm of a given vector for different examples of (non-Euclidean) inner products.
˛ Work out inner product of two given vectors for different examples of inner products.
˛ Normalise a vector to be a unit vector with respect to different examples of inner products.
˛ Determine whether vectors are orthogonal with respect to different examples of inner
products.

C. Orthonormal bases and Gram-Schmidt

With the concept of orthogonal vectors we have seen previously, we might be interested in having
a basis where all the vectors are orthogonal to each other, as we are used to from the standard
basis.
In this section, V is any real inner product space V with inner product x´,´y.

Definition 10.19: A set of vectors is called orthogonal if the vectors are pairwise orthogonal.
A set of vectors is called orthonormal if it is orthogonal and all vectors are unit vectors (i.e.
have norm 1). A basis which is also an orthonormal set is called an orthonormal basis.
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Examples 10.20: (Using the Standard Inner Product)
First we look at examples with the standard or Euclidean inner product.

a) The standard basis in Rn is an orthonormal basis.
b) v1 “ p 1

1 q and v2 “
`

1
´1

˘

form an orthogonal set, but they both have length
?
2. So

u1 “

˜

1?
2
1?
2

¸

, u2 “

˜

1?
2

´ 1?
2

¸

is an orthonormal basis of R2.
c) Not lectured. Here is an orthogonal basis of Rn (which is not the standard basis):

v1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

1

1
...

1
...

1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, v2 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

´1

0

0

0

0
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, v3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

1

´2

0

0

0
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, v4 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

1

2

´4

0

0
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, v5 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

1

2

4

´8

0
...

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

. . . , vk “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

20

21

22

...

2k´3

´2k´2

0
...

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, . . . , vn´1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

20

21

22

23

24

...

2n´4

´2n´3

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, vn “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

20

21

22

23

24

...

2n´4

2n´3

´2n´2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Then we can normalise it to get an orthonormal basis (but we won’t show it here).
How does this work: Construct v2 so that it is orthogonal to v1, but only uses the first

two entries. This means that when you take n “ 2, you can cut off the zeros, and you have an
orthogonal set of size 2 for R2. So it needs x1 ` x2 “ 0 to be orthogonal to v1.

Then construct v3 to be orthogonal to v1 and v2, but only uses the first three entries, so
that it works in R3. So we need x1 “ x2 to be orthogonal to v2, and x1 ` x2 ` x3 “ 0 to be
orthogonal to v1.

So you continue like this. For vk to be orthogonal to v2, v3, . . . , vk´2, it needs the same first
k´ 2 entries as vk´1. Then to be orthogonal to vk´1, the pk´ 1qth entry has to be the negative
of thepk´1qth entry of vk´1. And then the last non-zero entry (i.e. kth entry) is determined so
that the vector is orthogonal to v1, i.e. the sum of all entries has to be 0. So that last non-zero
entry is ´(sum of all previous entries)“ ´p1 ` 20 ` 22 ` ¨ ¨ ¨ ` 2k´3q “ ´2k´2.

Examples 10.21: (Using other inner products) Let’s see a few examples with different inner
products.
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a) [Weighted inner product] If we use an inner product weighted by D “ p 3 0
0 2 q as in a previous

example, then the standard basis in R2 is not orthonormal any more.

xp 1
0 q, p 0

1 qy “ 0 so they are still orthogonal

}p 1
0 q} “

?
3

}p 0
1 q} “

?
2

so
˜

1?
3

0

¸

,

˜

0
1?
2

¸

is an orthonormal basis in this inner product space.
Also

xp 1
1 q,

`

1
´1

˘

y “ 3 ´ 2 “ 1

so these two vectors are not orthogonal any more.
Not lectured, but for extra practice/understanding: Instead,

xp 2
3 q,

`

1
´1

˘

y “ 6 ´ 6 “ 0

or
xp 2

1 q,
`

1
´3

˘

y “ 6 ´ 6 “ 0

or some other such combination.
b) [Integral inner product on polynomial space] Here is a set of orthogonal polynomials in

P2, using the integral inner product:

p0pxq “ 1, p1pxq “ x, p2pxq “
1

2
p3x2 ´ 1q.

They are the first three Legendre Polynomials. It’s easy to see that x1, xy “ 0; you can
check the other conditions xp0, p2y “ 0 and xp1, p2y as well. Remember to integrate over
r´1, 1s. You won’t be asked this in the exam, but it’s super useful for a wide range of topics in
your mathematical future.

You see from above that for every n, Rn does have an orthonormal basis. We could ask the other
way round: if a given set is orthogonal, does it have to be linearly indepdenent? The answer is
yes:

Proposition 10.22: (Orthogonal sets are linearly independent.)
If v1, . . . , vk is an orthogonal set of non-zero vectors in the inner product space V , then it is
linearly independent.

Proof. Summary: take inner product with each vector.
Consider

λ1v1 ` ¨ ¨ ¨λkvk “ 0

and now apply xv1,´y to the equation:

ñ λ1xv1, v1y ` λ2xv1, v2y ` ¨ ¨ ¨ ` λnxv1, vky “ 0

ñ λ1xv1, v1y ` 0 “ 0

ñ λ1 “ 0

because xv1, v1y “ }v1}2 ‰ 0.
Similarly applying xvi,´y for all the i “ 2, . . . , k gives all other λi “ 0. So we have a linearly
independent set. □

So if dimV “ n, then having n orthogonal (or orthonormal) vectors gives us a basis. The good
thing about orthonormal bases is that the coordinates (i.e. the coefficients in front of each basis
vector) can be calculated much more easily than for a general basis.
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Proposition 10.23: (Coordinates for orthonormal basis)
If u1, . . . , un is an orthonormal basis, then for any v, we have

v “ xv, u1yu1 ` xv, u2yu2 ` ¨ ¨ ¨ ` xv, unyun.

Proof. As u1, . . . , un is a basis, we know that there are some λi such that

v “ λ1u1 ` ¨ ¨ ¨ ` λnun.

Then

xv, uiy “ xλ1u1 ` ¨ ¨ ¨ ` λnun, uiy

“ λ1xu1, uiy ` ¨ ¨ ¨ ` λnxun, uiy

“ λ10 ` ¨ ¨ ¨ ` 0 ` λixui, uiy ` 0 ` ¨ ¨ ¨ ` λn0

“ λi

since xuj , uiy “ 0 for j ď i and xui, uiy “ 1 for the orthonormal basis. □

This is very different to how we find coordinates for a general basis (which is not orthonormal)!
There we need to know all the basis vectors to be able to find the coordinates. Here, as long as
we know the vector is part of some orthonormal basis, we can find the coordinate in that direction
just using that single vector. (This is a super amazing fact.)

Example 10.24: Recall the orthonormal basis

u1 “

˜

1?
2
1?
2

¸

“
1

?
2

˜

1

1

¸

, u2 “

˜

1?
2

´ 1?
2

¸

“
1

?
2

˜

1

´1

¸

of R2 we worked out above. To find the coordinates with respect to this basis for v “
`

´4
13

˘

, we
can calculate:

˛ λ1 “ xv, u1y “ 1?
2

pp´4q ¨ 1 ` 13 ¨ 1q “ 9?
2

˛ λ2 “ xv, u2y “ 1?
2

p´4q ¨ 1 ` 13 ¨ p´1qq “ ´17?
2

And indeed

9
?
2
u1 `

´17
?
2
u2 “

9
?
2

¨
1

?
2

˜

1

1

¸

`
´17
?
2

¨
1

?
2

˜

1

´1

¸

“
1

2

˜

9 ´ 17

9 ` 17

¸

“
1

2

˜

´8

26

¸

“

˜

´4

13

¸

Hurray!

We can also turn any basis into an orthonormal basis. This is much easier to understand on an
example first, so we’ll do an example and then the general result.

Example 10.25: (Applying Gram-Schmidt normalisation)

Let v1 “

´

1
1
1

¯

, v2 “

´

1
1
0

¯

, v3 “

´

1
0
0

¯

, which is a basis of R3. We will, step by step, turn it into an

orthonormal basis of R3.

˛ Start with Ău1 “ v1 “

´

1
1
1

¯

.

˛ Now, using the way we can determine coordinates for an orthonormal basis (Prop. 10.23),
we want to take off the component of v2 which is in direction Ău1:

Ău2 “ v2 ´
xv2,Ău1y

}Ău1}2
Ău1 “

´

1
1
0

¯

´
2

3

´

1
1
1

¯

“

˜

1
3
1
3

´ 2
3

¸

“
1

3

´

1
1

´2

¯

(We need the 1
}Ău1}2

there because we have not normalised Ău1 yet.)

“Be amazed” interlude: This works because of the amazing fact about coordinates
for orthonormal bases. We don’t even know the whole basis Ău1,Ău2,Ău3 yet, we’re still
constructing it. But still we can already work out the coordinate of v2 in direction
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Ău1. This is not possible for a “commonplace” basis!!! There you’d need to know all
the basis vectors before you can work out any coordinates.

˛ For the third one, we take off the components in the directions of the two we have already
made:

Ău3 “ v3 ´
xv3,Ău1y

}Ău1}2
Ău1 ´

xv3,Ău2y

}Ău2}2
Ău2 “

´

1
0
0

¯

´
1

3

´

1
1
1

¯

´
1

2

˜

1
3
1
3

´ 2
3

¸

“

ˆ

1
2

´ 1
2
0

˙

“
1

2

´

1
´1
0

¯

Now we can check that

˛ xĂu1,Ău2y “ 0
˛ xĂu1,Ău3y “ 0
˛ xĂu2,Ău3y “ 0

(Compare with the orthogonal set of Rn in the example c after that definition.)

Geometric explanation:
Suppose you arrange a blackboard so that v1 goes straight up in the blackboard surface, and
v2 goes at an angle to v1 but is also in the blackboard surface. (I.e. we put the blackboard in
the position of the surface spanned by v1, v2.)
Then the plane orthogonal to v1 is the plane that is horizontal (to the floor) and 90˝ to the
blackboard. Imagine taking a piece of paper to stick out in front of the blackboard. So since
we want an orthogonal basis, we want all our other vectors to be in the plane of that piece of
paper.
v2 is somewhere in the blackboard plane, and we get Ău2 by “projecting v2 onto the piece
of paper”. Imagine shining a light from exactly above the blackboard, and the shadow the
vector v2 makes on the paper is Ău2.
v3 is lurking around somewhere in space, imagine it as an arrow which is sticking out at any
old angle from the point where v1, v2 start. So we first want to project it onto the piece of
paper (shine a light from above the blackboard, take the shadow of the arrow on the paper).

This corresponds to “taking ´
xv3,Ău2y

}Ău1}2
Ău1”.

Now look at the piece of paper which is sticking out of the blackboard from above. It has one

vector Ău2 drawn on it, and another vector w “ v3 ´
xv3,Ău1y

}Ău1}2
Ău1 drawn on it (the projection of

the arrow onto the piece of paper). So now draw the line on the paper which is perpendicular

to Ău2, and project w onto that line: that corresponds to “taking ´
xv3,Ău2y

}Ău2}2
Ău2”, and gives us Ău3.

So now we just have to normalise them all to get

u1 “
1

}Ău1}
Ău1 “

1
?
3

´

1
1
1

¯

,

u2 “
1

}Ău2}
Ău2 “

1

´
?
6
3

˜

1
3
1
3

´ 2
3

¸

“
1

?
6

´

1
1

´2

¯

,

u3 “
1

}Ău3}
Ău3 “

1
1?
2

ˆ

1
2

´ 1
2
0

˙

“
1

?
2

´

1
´1
0

¯

and we have an orthonormal basis. Notice the special thing about this basis:

Spanpu1q “ Spanpv1q, Spanpu1, u2q “ Spanpv1, v2q, Spanpu1, u2, u3q “ Spanpv1, v2, v3q.

This is nice, because we may have chosen v1 to be a special direction, e.g. an eigenvector direction
or something. And we may have chose the “blackboard plane” to be special as well. So this
algorithm preserves us these directions/planes.

So here it is in general.
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Theorem 10.26: (Gram-Schmidt normalisation)
Given a basis v1, v2, . . . , vn, an orthonormal basis u1, ¨ ¨ ¨ , un can be constructed with the
property that Spanpv1, ¨ ¨ ¨ , vkq “ Spanpu1, ¨ ¨ ¨ , ukq for any k “ 1, ¨ ¨ ¨ , n, by the following
inductive steps:

˛ Ău1 “ v1
˛ Ău2 “ v2 ´

xv2,Ău1y

}Ău1}2
Ău1 (take off the component of v2 which is in direction Ău1)

˛ Ău3 “ v3 ´
xv3,Ău1y

}Ău1}2
Ău1 ´

xv3,Ău2y

}Ău2}2
Ău2 (take off components in directions Ău1 and Ău2)

˛
...

˛ Ăun “ vn ´
n´1
ř

i“1

xvn,Ăuiy

}Ăui}2
rui (take off the components in previous directions)

˛ For each k, uk “ 1
}Ăuk}

Ăuk. (normalise all the vectors)

Proof. Not lectured, so won’t be in exam, but is part of your education.
We first check that Ăuk, rul are orthogonal, for k ‰ l. Let’s start with 1 and 2:

xĂu1,Ău2y “ xĂu1, pv2 ´
xv2,Ău1y

}Ău1}2
Ău1qy

“ xĂu1, v2y ´
xv2, v1y

}v1}2
xĂu1,Ău1y (linear in second entry)

“ xĂu1, v2y ´ xv2,Ău1y (def of norm)

“ 0 (symmetric)

Now suppose that for a given k ď n, the vectors Ău1, . . . ,Ăuk are all orthogonal to each other, i.e.
x rui, rujy “ 0 for all i ‰ j ď k. Then we look at Ćuk`1:

xrul, Ćuk`1y “

C

rul,

˜

vk`1 ´

k
ÿ

i“1

xvk`1, ruiy

} rui}
2

rui

¸G

“ xrul, vk`1y ´

k
ÿ

i“1

xvk`1, ruiy

} rui}
2

xrul, ruiy (linear in second entry)

“ xrul, vk`1y ´
xvk`1, ruly

}rul}
2

xrul, ruly (by assumption the others are 0)

“ 0

So by induction, all the rui are pairwise orthogonal, so their normalised version ui form an or-
thonormal set.
It is clear by contruction that Spanpv1, ¨ ¨ ¨ , vkq “ Spanpu1, ¨ ¨ ¨ , ukq for any k “ 1, ¨ ¨ ¨ , n. □

Examples 10.27: Not lectured, here to help you with understanding. You could view them as
exercises to which you can check the answer.

a) Let’s apply Gram-Schmidt to v1 “ p 1
1 q and v2 “

`

1
´1

˘

, using the weighted inner product with
D “ p 3 0

0 2 q.

Ău1 “ v1 “ p 1
1 q

Ău2 “ v2 ´
xv2,Ău1y

}Ău1}2
Ău1 “

`

1
´1

˘

´
1

5
p 1
1 q “

1

5

`

4
´6

˘

We see that xĂu1,Ău2y “ 1
5 p3 ¨ 1 ¨ 4 ´ 2 ¨ 1 ¨ 6q “ 0. So we just normalise:

u1 “
1

}Ău1}
Ău1 “

1
?
5

p 1
1 q

u2 “
1

}Ău2}
Ău2 “

1
?
30

`

2
´3

˘

.

b) If you apply Gram-Schmidt to the standard basis 1, x, x2 etc. of a polynomial space, then you
get the Legendre polynomials.
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Study guide.
Concept review

˛ Othogonal set, orthonormal set of vectors; orthonormal basis.
˛ Orthogonal set of vectors is linearly independent.
˛ The special way of determining coordinates for an orthonormal basis.
˛ Gram-Schmidt normalisation.

Skills

˛ Determine whether a set is orthogonal or orthonormal.
˛ Find coordinates of a vector with respect to an orthonormal basis.
˛ Create an orthonormal basis out of a given basis, using Gram-Schmidt.

D. Complex inner product

We can generalise the inner product to complex numbers, but we have to be a little careful. What
we want is to still have real numbers as the “length” of vectors. So we define

Definition 10.28: The complex inner product on Cn is a function x´,´y : Cn ˆ Cn ÝÑ C
defined by

xv, wy “ vTw “

´

v1 v2 ¨ ¨ ¨ vn

¯

¨

˚

˚

˚

˚

˝

w1

w2

...

wn

˛

‹

‹

‹

‹

‚

“ v1w1 ` v2w2 ` ¨ ¨ ¨ ` vnwn “

n
ÿ

j“1

vjwj .

The norm (or length or magnitude) of a vector in Cn is defined as

}v} “
a

xv, vy P R.

IMPORTANT: the norm of a vector is indeed in R, because
xv, vy “ v1v1 ` v2v2 ¨ ¨ ¨ vnvn “ |v1|2 ` ¨ ¨ ¨ |vn|2 P R,

using the modulus of complex numbers, which is a real number.

Example 10.29: a) If v “

ˆ

2
´i
3

´5`2i

˙

then

}v} “
a

22 ` p´iqi ` 32 ` p´5 ` 2iqp´5 ´ 2iq “
a

4 ` 1 ` 9 ` p52 ` 22q “
?
43.

b) If v is as above and w “

ˆ

´3i
´4`i

´2
0

˙

, then

xv, wy “ 2 ¨ p´3iq ` p´iq ¨ p´4 ` iq ` 3 ¨ p´2q ` p´5 ` 2iq ¨ 0

“ 2 ¨ p3iq ` p´iqp´4 ´ iq ` 3 ¨ p´2q ` 0

“ ´7 ` 10i.

The complex inner product is not quite bilinear: because we have the complex conjugation on
one of the entries, we only get something that is “nearly” linear in the second entry. We call the
complex inner product “sesqui-linear”. “Sesqui” means “one-and-a-half” in Latin, so it is “one-
and-a-half linear”: linear on one side, and linear but with complex conjugate scalars on the other
side. You could call it “linear in the first entry, and conjugate-linear in the second entry”.
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Theorem 10.30: (Complex inner product properties)
The complex inner product x´,´y : Cn ˆ Cn ÝÑ C satisfies:

(i) xλu ` µv,wy “ λxu,wy ` µxv, wy

and xv, λu ` µwy “ λxv, uy ` µxv, wy (sesqui-linear)

(ii) xv, wy “ xw, vy (conjugate-symmetric)
(iii) xv, vy ě 0, and xv, vy “ 0 ô v “ 0 (positive definite)

The first two properties together are also called hermitian.

Proof. (i) We have

xλu ` µv,wy “ pλu ` µvqTw “ λuTw ` µvTw

and

xv, λu ` µwy “ vT pλu ` µwq “ λvTu ` µvTw “ λxv, uy ` µxv, wy.

(ii) xv, wy “ vTw “ pvTwqT “ wT v “ wT v “ xw, vy.

Or do it explicitely with entries: xv, wy “
n
ř

j“1

vijwj “
n
ř

j“1

vjwj “ xw, vy.

(iii) xv, vy “
n
ř

j“1

vjvj “
n
ř

j“1

|vj |2 using the modulus of a complex number. As before, a sum of

non-negative terms is non-negative, and 0 if and only if each summand is 0. □

IMPORTANT: The ě symbol in the last point only makes sense because in that case we are dealing
with real numbers. We cannot “compare” complex numbers, meaning complex numbers cannot be
“bigger” or “smaller” than another one.

And now we can repeat all the results from the previous section, they all carry over to complex
norm and inner product. They will be listed hereafter for your convenience.

There is an important result about real matrices which needs the complex inner product for it’s
proof:

Theorem 10.31: (Real symmetric matrix has real evalues.)
Any real symmetric matrix only has real eigenvalues.

What we mean by this is that the characteristic polynomial factors into linear factors over R, not
just over C.

Proof. View a real symmetric matrix A as a complex matrix, with (potentially complex)
eigenvalue λ. Say Av “ λv for v ‰ 0 P Cn. Then, using the complex inner product, we have

vTAv “ vT pλvq “ λvT v but also, as A real

“ vTAv “ pAT vqT v “ pAvqT v as A symmetric

“ λvT v.

So alltogether we get
λvT v “ λvT v ô pλ ´ λqvT v “ 0.

But v ‰ 0, so vT v ‰ 0, so λ “ λ and so the eigenvalue λ is real. □

In fact, we can say more:

Theorem 10.32: (Real symmetric matrix is orthogonally diagonalisable.)
For any real symmetric matrix A, there is a basis of eigenvectors for A which is also an
orthonormal basis.

Proof. Not examinable, but still part of your education. Important for second year. We will
do this in steps:
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Proposition 10.33: (Evectors for different evalues of a real symmetric matrix are
orthogonal.)
If A is a real symmetric matrix with evalues λ1 ‰ λ2, then eigenvectors v1, v2 for λ1, λ2 are
orthogonal.

Proof. Note that as a real symmetric matrix has real eigenvalues (Thm 10.31), it also has
real eigenvectors. So we can use the real inner product here.
We have

λ1xv1, v2y “ xλ1v1, v2y “ xAv1, v2y

“ pAv1qT v2 “ vT1 A
T v2 “ vT1 Av2 as A symmetric

“ xv1, Av2y “ xv1, λ2v2y

“ λ2xv1, v2y

So pλ1 ´ λ2qxv1, v2y “ 0. As pλ1 ´ λ2q ‰ 0, we must have xv1, v2y “ 0, i.e. the vectors are
orthogonal. □

Then we need a result which splits off one vector (and its whole subspace):

Proposition 10.34: (Line and orthogonal complement)
Given v ‰ 0 P V , then V “ xvy ‘ xvyK.

Proof. Here xvy is the one-dimensional subspace spanned by v, i.e. xvy “ tkv | k P Ru.
And xvyK is the orthogonal complement of v: all vectors which are orthogonal to v. I.e.
xvyK “ tw | xv, wy “ 0u. We proved in a workbook question that this set of all vectors orthogonal
to v is indeed a subspace of V .
To show this is a direct sum, we have to show that the intersection is zero:
Let w P xvy X xvyK. Then w “ kv for some k, and also xv, wy “ 0. So xv, kvy “ kxv, vy “ 0. But
xv, vy “ }v}2 ‰ 0 as v ‰ 0, so k “ 0, so w “ 0. So the intersection of these two spaces is only zero.
xvy X xvyK “ 0.
So the sum is a direct sum. To show that we get all of V , we look at dimensions:
xvyK is the kernel of the linear map xv,´y : Rn ÝÑ R. The image is all of R (as long as v ‰ 0, which
it is). This is because we can get any real number by using xv, kvy “ kxv, vy. So by rank-nullity,
we have

dimpxvyKq ` dimpRq “ n

which gives dimxvyK “ n ´ 1. So the dimension of the direct sum is

dimpxvy ‘ xvyKq “ dimpxvyq ` dimpxvyKq “ 1 ` n ´ 1 “ n

and so this direct sum is all of V . □

Using this result, we can split off one eigenvector and use induction.

Proof of Theorem 10.32. A is a real symmetric matrix, so it has real eigenvalues. Let λ
be an eigenvalue with eigenvector v. Then V “ xvy ‘ xvyK, by Prop. 10.34.
From Prop. 10.33 we know that all other existing eigenvectors are in xvyK, so it makes sense to
split off V in this fashion. We now look at how A works on xvyK, so that we can use induction (as
this space has one dimension less than V ).
Given w P xvyK, we want to show that Aw P xvyK as well. As A is symmetric, we have A “ AT .
So

xv,Awy “ vTAw “ vTATw “ pAvqTw “ xAv,wy “ xλv,wy “ λxv, wy “ 0.

So Aw P xvyK. This means we can view A as a linear map A : xvyK ÝÑ xvyK, on a space of
dimension n´ 1. By induction hypothesis, xvyK has an orthonormal basis of eigenvectors of A. So
if we add v (normalised to length 1), then we have an orthonormal basis of eigenvectors for A as a
basis of V . Note that v is orthogonal to all the other vectors we have in this basis, since they are
in the orthogonal complement of v.
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The induction base case is when dimpV q “ 1: then we have just one eigenvector, and normalising
it gives an orthonormal basis of the one-dimensional space.
Hence every real symmetric matrix is diagonalisable, with an orthonormal basis of eigenvectors. □

Examples 10.35: Here are two examples. (We did these in the live lecture rather than on pre-
recorded videos.)

˛ Let A “

¨

˚

˝

1 2 3

2 2 2

3 2 1

˛

‹

‚

. This is a real symmetric matrix, so we know it is diagonalisable

without having to do any calculations.
It has characteristic polynomial

χptq “

∣∣∣∣∣∣∣
t ´ 1 ´2 ´3

´2 t ´ 2 ´2

´3 ´2 t ´ 1

∣∣∣∣∣∣∣
“ pt ´ 1qpt ´ 2qpt ´ 1q ´ 12 ´ 12 ´ 9pt ´ 2q ´ 4pt ´ 1q ´ 4pt ´ 1q

“ pt2 ´ 2t ` 1qpt ´ 2q ´ 24 ´ 17t ` 26

“ t3 ´ 4t2 ´ 12t

“ tpt ´ 6qpt ` 2q

So the eigenvalues are 0, 6 and ´2. (Notice: even if we did not know from A being
symmetric, now we definitely know that A is diagonalisable, because it has 3 distinct
evalues.)

To work out the evector for λ “ 6: we need to take the matrix A ´ 6I to RREF, i.e.

¨

˚

˝

´5 2 3

2 ´4 2

3 2 ´5

˛

‹

‚

ÝÑ

¨

˚

˝

1 ´ 2
5 ´ 3

5

0 ´ 16
5

16
5

0 16
5 ´ 16

5

˛

‹

‚

ÝÑ

¨

˚

˝

1 ´ 2
5 ´ 3

5

0 1 ´1

0 0 0

˛

‹

‚

ÝÑ

¨

˚

˝

1 0 ´1

0 1 ´1

0 0 0

˛

‹

‚

So the eigenvector is

¨

˚

˝

1

1

1

˛

‹

‚

.

The eigenvector for λ “ ´2 is

¨

˚

˝

´1

0

1

˛

‹

‚

, and for λ “ 0 it is

¨

˚

˝

1

´2

1

˛

‹

‚

.

We see that these three eigenvectors form an orthogonal set. But they are not an
orthonormal set, as they don’t have length 1. The “orthogonal” comes automatically
here, but we have to normalise them ourselves to get the orthonormal basis of eigenvectors
mentioned in Theorem 10.32.

˛ Let A “

¨

˚

˝

7
3 0 ´

?
2
3

0 2 0

´
?
2
3 0 8

3

˛

‹

‚

. This is also real symmetric, so we know it is diagonalisable.

The characteristic polynomial is χptq “ pt ´ 2q2pt ´ 3q. So we have a repeated
eigenvalue: in the usual case, when we don’t have the additional information of it being
a symmetric matrix, we would have to work out the geometric multiplicities to decide
whether this matrix is diagonalisable. So here the result about real symmetric matrices
really gives us new information.

We can work out that the eigenvectors are:

for λ “ 2 we have

¨

˚

˝

0

1

0

˛

‹

‚

and

¨

˚

˝

?
2

0

1

˛

‹

‚

;
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for λ “ 3 we have

¨

˚

˝

´1

0
?
2

˛

‹

‚

.

But as for λ “ 2, we have a two-dimensional eigenspace, we could also have chosen:

for λ “ 2 we take v1 “

¨

˚

˝

0

1

0

˛

‹

‚

and v2 “

¨

˚

˝

?
2

1

1

˛

‹

‚

;

for λ “ 3 we take v3 “

¨

˚

˝

´1

0
?
2

˛

‹

‚

.

The first option gives an orthogonal set (which we can normalise), but the second
option is not orthogonal. While v1 and v3 are orthogonal and v2 and v3 are orthogonal,
because they come from different eigenvalues, we see that v1 and v2 are not orthogonal.
Because we have a two-dimensional eigenspace, we have to choose the basis for this space
to be orthogonal; that part is not automatic.

But we can make such a choice, so we can get an orthonormal basis of eigenvectors,
as mentioned in Theorem 10.32.

Notice this is actually not unique: here is another orthogonal set of eigenvectors
(which we can normalise):

for λ “ 2 we take

¨

˚

˝

?
2

?
3

1

˛

‹

‚

and

¨

˚

˝

?
2

´
?
3

1

˛

‹

‚

;

for λ “ 3 we take v3 “

¨

˚

˝

´1

0
?
2

˛

‹

‚

.

For a two-dimensional space, we can choose different orthogonal bases.

(Study guide at end)
For your convenience, a list of results for the complex inner product:

Corollary 10.36: (“Properties of (complex) norm”)
The complex norm on Cn satisfies:

(i) }v} ě 0.
(ii) }v} “ 0 ô v “ 0.
(iii) }λv} “ |λ|}v}.

Proof. Exercise: use complex inner product properties. □

It is often useful to remember

}v}2 “ xv, vy.

Definition 10.37: A unit vector is a vector of norm 1. Given v P Cn, if v ‰ 0, we can
normalise v to the unit vector 1

}v}
v.

Examples 10.38: a) The standard basis vectors of Cn are all unit vectors.

b) If v “

ˆ

2
´i
3

´5`2i

˙

as above, then its normalisation is u “ 1
}v}

v “ 1?
43

ˆ

2
´i
3

´5`2i

˙

.
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c) If v “

˜ 1
1
...
1

¸

P Cn, then its normalisation is still 1?
n
v.

d) If w “

¨

˝

i
i
...
i

˛

‚P Cn, then w “ iv for the v in the previous example, and so }w} “ |i|}v} “ }v}, so

the normalisation is 1?
n
w.

Definition 10.39: Two vectors v, w P Cn are called orthogonal exactly when xv, wy “ 0.

Examples 10.40: a) The standard basis vectors are pairwise orthogonal.
b) v1 “ p 1

i q and v2 “ p i
1 q are orthogonal in C2:

xv1, v2y “ 1 ¨ i ` i ¨ 1 “ ´i ` i “ 0.

As in R, we can use the inner product to determine vectors:

Proposition 10.41: (Inner product detects 0)
For given v P Cn, xv, wy “ 0 for all w P Cn if and only if v “ 0.

Proof. Same as for R. □

We still have Cauchy-Schwarz:

Theorem 10.42: (Cauchy-Schwarz inequality)
For u, v P Cn, we have

|xu, vy|2 ď }u}2}v}2

(ñ |xu, vy| ď }u}}v})

Proof. Same proof as for R, because all the quantities above are real numbers. Notice we
can’t go to xu, vy ď }u}}v} without modulus, because that is (potentially) a complex number and
can’t be compared. □

And again we get:

Corollary 10.43: (Triangle inequality for norm)
Given v, w P Rn, then }v ` w} ď }v} ` }w}.

Proof. Same as for R. □

We also still have orthogonal and orthonormal bases, and Gram-Schmidt normalisation.

Study guide.
Concept review

˛ Complex inner product and norm, and relationship between the two.
˛ Complex inner product properties: it’s sesqui-linear, conjugate-symmetric, positive def-
inite.

˛ Real symmetric matrix has real eigenvalues.
˛ Real symmetric matrix has orthonormal basis of eigenvectors (without proof).
˛ Properties of inner product and norm from before, now for complex inner product.

Skills

˛ Work out norm of a complex vector.
˛ Work out inner product of two complex vectors.
˛ Use properties of complex inner product for expansion/manipulation.
˛ Normalise a complex vector to be a unit vector.
˛ Determine whether complex vectors are orthogonal.
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E. Study guide collation

Just putting together all the study guides from the different sections.

Concept review.

˛ Standard (Euclidean) Inner Product, norm, and the connection between the two.
˛ Inner product properties: it’s bilinear, symmetric, positive definite.
˛ Norm properties that we expect from a “length”.
˛ Unit vectors, normalisation of vectors.
˛ Orthogonal vectors. Hyperplane orthogonal to a vector.
˛ Inner product detects 0.
˛ Cauchy-Schwarz inequality.
˛ Triangle inequality of norm.
˛ General inner product.
˛ Examples of weighted inner product, matrix inner product, integral inner product.
˛ Othogonal set, orthonormal set of vectors; orthonormal basis.
˛ Orthogonal set of vectors is linearly independent.
˛ The special way of determining coordinates for an orthonormal basis.
˛ Gram-Schmidt normalisation.
˛ Complex inner product and norm, and relationship between the two.
˛ Complex inner product properties: it’s sesqui-linear, conjugate-symmetric, positive def-
inite.

˛ Real symmetric matrix has real eigenvalues.
˛ Real symmetric matrix has orthonormal basis of eigenvectors (without proof).
˛ Properties of inner product and norm from before, now for complex inner product.

Skills.

˛ Work out norm of a given vector.
˛ Work out inner product of two given vectors.
˛ Use properties of inner product for expansion/manipulation.
˛ Normalise a vector to be a unit vector.
˛ Determine whether vectors are orthogonal.
˛ Work out norm of a given vector for different examples of (non-Euclidean) inner products.
˛ Work out inner product of two given vectors for different examples of inner products.
˛ Normalise a vector to be a unit vector with respect to different examples of inner products.
˛ Determine whether vectors are orthogonal with respect to different examples of inner
products.

˛ Determine whether a set is orthogonal or orthonormal.
˛ Find coordinates of a vector with respect to an orthonormal basis.
˛ Create an orthonormal basis out of a given basis, using Gram-Schmidt.
˛ Work out norm of a complex vector.
˛ Work out inner product of two complex vectors.
˛ Use properties of complex inner product for expansion/manipulation.
˛ Normalise a complex vector to be a unit vector.
˛ Determine whether complex vectors are orthogonal.
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