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Aim of the talk
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Why?

In topological example gives some universal properties of the
“usual” fundamental group, and (hopefully) also the
connecting homomorphism in exact sequence induced by a
fibration.

In algebraic examples gives another approach to semi-abelian
homology.
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Fundamental group

Definitions
Galois group

Galois structures

Definition (Janelidze)

A Galois structure Γ consists of an adjunction

C
I
⊥

//
X

H
oo

with unit η and counit ε, as well as classes of maps E in C and F
in X satisfying certain axioms.
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Definitions
Galois group

Examples of Galois structures

Groups with subcategory abelian groups, regular epis.

Semi-abelian C with Birkhoff subcategory, regular epis.

Locally connected topological spaces and sets.
H is discrete topology functor,
I = π0, connected components functor.
E = local homeomorphisms (étale maps), F = all maps.

Opposite of finite dimensional k -algebras, finite sets, each
with all maps. The adjunction is defined through idempotent
decomposition of k -algebras: a k -algebra is sent to its set of
primitive idempotents.
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Definitions
Galois group

Special maps in Galois structures

trivial coverings: A

E 3f
��

ηA // HIA

HIf
��

B ηB
// HIB

(cartesian wrt. I)

monadic extensions: p : E −→ B in E with
p∗ : (E ↓ B) −→ (E ↓ E) monadic.
(good to pull back along)

coverings (or central extensions): f∈ E with p∗(f) trivial for
some monadic p. (locally trivial)

normal extensions: monadic p with trivial kernel pair
projections.
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Definitions
Galois group

Examples

Groups with abelian groups:
monadic extensions: all regular epis.
central extensions as usual, kernel inside centre;

topological example:
monadic extensions: surjective étale maps;
coverings: usual topological sense;
normal extensions: regular coverings.

In many algebraic examples, central = normal.
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Definitions
Galois group

Admissibility

From now on H is inclusion.

admissible Galois structure: I preserves pullbacks along trivial
coverings.

When E is all maps,
admissible = semi-left exact = Street fibration.

⇒ Trivial coverings are pullback-stable.

Think “trivial coverings are pullback-closure of F in C ”.

If monadic extensions pullback-stable, then also normal
extensions and coverings pullback-stable.
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Definitions
Galois group

Galois groupoid (Janelidze)

Take C pointed and p : E −→ B normal extension.

Galois groupoid GalΓ(p) = IEq(p)

Eq(p)
d //
c

//

η

��

E
p //

ηE

��

B

IEq(p)
Id //

Ic
// IE

Still groupoid, as I preserves defining pullbacks, because d
and c trivial.

Galois group GalΓ(p, 0) = Ker Id ∩ Ker Ic
automorphisms at 0
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Definitions
Galois group

Properties of Galois group functor

Morphisms in NExtΓ(C )

E
f //
g

//

p
��

E′

p′

��
B

b
// B′

induce

homotopy on kernel pairs and Galois groupoids,

same morphism GalΓ(p, 0) −→ GalΓ(p′, 0) on Galois group.

(f , 1B) : p −→ p induces identity on Galois group.
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Definition
Kan extension

Fundamental group functor

Now assume that weakly universal normal extensions exist.

NExtΓ(C )

Cod

����
��

��
��

��
�

GalΓ(−,0)

��?
??

??
??

??
?

C
π1(−,I)

//

t
κ

Gp(X )

Definition (Janelidze)

Given B ∈ C , pick weakly universal normal extension u : U −→ B,
and let

π1(B , I) = GalΓ(u, 0).

Functorial in B because of induced homotopies.
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Definition
Kan extension

Examples

Groups and abelian groups: get π1(B , I) = H2(B ,Z)
(group homology).

One consequence of current work: this also works for higher
homology groups.

Topological example: get usual fundamental group.
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Definition
Kan extension

Natural transformation κ

κ : π1(−, I)◦Cod =⇒ GalΓ(−, 0)

has components

κp : π1(B , I) = GalΓ(u, 0) −→ GalΓ(p, 0)

for normal extension p : E −→ B, induced by (any)

U

u
��

h // E

p
��

B B

That is, κp = GalΓ((h, 1B), 0).
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Definition
Kan extension

Universality of κ

Given
NExtΓ(C )

Cod

����
��

��
�� GalΓ(−,0)

��?
??

??
??

C F
//

t
γ

Gp(X )

define α : F =⇒ π1(−, I) by αB = γu : FB −→ π1(B , I).
Then

α is natural by naturality of γ;

κp◦αCod p = γp for all normal extensions p, by naturality of γ;

α is unique: given β with κp◦βCod p = γp for all normal p, get
αB = βB as κu is an iso for weakly universal u.
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Definition
Kan extension

Kan extension

So indeed we have a Kan extension

NExtΓ(C )

Cod

����
��

��
��

��
��

��
��

��
��

GalΓ(−,0)

��?
??

??
??

??
??

??
??

??
??

C
π1(−,I)
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t
κ
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Definition
Kan extension

What we used

A
H

����
��

��
�� G

��?
??

??
??

?

D K
//

t
κ

B

H(f) = H(g)⇒ G(f) = G(g)

for all D ∈ D there is U ∈ A with H(U) = D and for all A ∈ A ,
HomA (U,A) −→ HomD(D,HA) is surjective.

Define K(D) = G(U), well-defined and functorial by above
properties.

Get Kan-extension.
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Next steps

Get also Kan extension

NExtΓ(C )

Cod

����
��

��
��

��
�

U◦GalΓ(−,0)
??

??
tι

��?
??

??

Ker

��
C

π1(−,I)
//

t
κ

X

For p : E −→ B normal, U◦GalΓ(p, 0) = Ker p ∩ Ker ηE .

So ιp : Ker p ∩ Ker ηE −→ Ker p is a mono.

We hope that any natural transformation F◦Cod =⇒ Ker
factors over U◦GalΓ(−, 0). (true in the examples)

In any case, can show another way that this is also a Kan
extension.
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Thanks for listening!
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