The fundamental group functor as a Kan extension

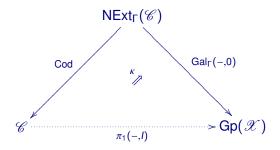
Julia Goedecke

University of Cambridge

joint work with Tomas Everaert and Tim Van der Linden

25 March 2013, PSSL Sheffield

Aim of the talk



Julia Goedecke (Cambridge)

- In topological example gives some universal properties of the "usual" fundamental group, and (hopefully) also the connecting homomorphism in exact sequence induced by a fibration.
- In algebraic examples gives another approach to semi-abelian homology.

- In topological example gives some universal properties of the "usual" fundamental group, and (hopefully) also the connecting homomorphism in exact sequence induced by a fibration.
- In algebraic examples gives another approach to semi-abelian homology.

Galois structures

Definition (Janelidze)

A Galois structure Γ consists of an adjunction

 $\mathscr{C} \xrightarrow[]{\overset{I}{\swarrow}}_{\overset{L}{\longleftarrow}} \mathscr{X}$

with unit η and counit ϵ , as well as classes of maps \mathscr{E} in \mathscr{C} and \mathscr{F} in \mathscr{X} satisfying certain axioms.

• Groups with subcategory abelian groups, regular epis.

- Semi-abelian \mathscr{C} with Birkhoff subcategory, regular epis.
- Locally connected topological spaces and sets. *H* is discrete topology functor,

 $I = \pi_0$, connected components functor.

 $\mathscr{E} =$ local homeomorphisms (étale maps), $\mathscr{F} =$ all maps.

 Opposite of finite dimensional k-algebras, finite sets, each with all maps. The adjunction is defined through idempotent decomposition of k-algebras: a k-algebra is sent to its set of primitive idempotents.

- Groups with subcategory abelian groups, regular epis.
- Semi-abelian $\mathscr C$ with Birkhoff subcategory, regular epis.
- Locally connected topological spaces and sets. *H* is discrete topology functor,
 - $I = \pi_0$, connected components functor.

 $\mathscr{E} = \text{local homeomorphisms (étale maps), } \mathscr{F} = \text{all maps.}$

 Opposite of finite dimensional k-algebras, finite sets, each with all maps. The adjunction is defined through idempotent decomposition of k-algebras: a k-algebra is sent to its set of primitive idempotents.

- Groups with subcategory abelian groups, regular epis.
- Semi-abelian $\mathscr C$ with Birkhoff subcategory, regular epis.
- Locally connected topological spaces and sets. *H* is discrete topology functor,
 - $I = \pi_0$, connected components functor.
 - $\mathscr{E} = \text{local homeomorphisms}$ (étale maps), $\mathscr{F} = \text{all maps}$.
- Opposite of finite dimensional k-algebras, finite sets, each with all maps. The adjunction is defined through idempotent decomposition of k-algebras: a k-algebra is sent to its set of primitive idempotents.

- Groups with subcategory abelian groups, regular epis.
- Semi-abelian $\mathscr C$ with Birkhoff subcategory, regular epis.
- Locally connected topological spaces and sets. *H* is discrete topology functor,
 - $I = \pi_0$, connected components functor.
 - $\mathscr{E} = \text{local homeomorphisms}$ (étale maps), $\mathscr{F} = \text{all maps}$.
- Opposite of finite dimensional k-algebras, finite sets, each with all maps. The adjunction is defined through idempotent decomposition of k-algebras: a k-algebra is sent to its set of primitive idempotents.

Definitions

Special maps in Galois structures

• trivial coverings: $A \xrightarrow{\prime \prime A} HIA$ $\mathscr{E}_{\ni f} \qquad \qquad \downarrow HIf$ $B \xrightarrow{n_{B}} HIB$

(cartesian wrt. I)

- monadic extensions: $p: E \longrightarrow B$ in \mathscr{E} with
- coverings (or central extensions): $f \in \mathscr{E}$ with $p^*(f)$ trivial for
- normal extensions: monadic p with trivial kernel pair

Definitions

Special maps in Galois structures

• trivial coverings: $A \xrightarrow{\prime\prime A} HIA$ $\mathscr{E} \ni f \bigvee \qquad \downarrow HIf$ $B \longrightarrow HIB$

(cartesian wrt. l)

- monadic extensions: $p: E \longrightarrow B$ in \mathscr{E} with $p^*: (\mathscr{E} \downarrow B) \longrightarrow (\mathscr{E} \downarrow E)$ monadic. (good to pull back along)
- coverings (or central extensions): $f \in \mathscr{E}$ with $p^*(f)$ trivial for
- normal extensions: monadic p with trivial kernel pair

Definitions

Special maps in Galois structures

(cartesian wrt. l)

- monadic extensions: $p: E \longrightarrow B$ in \mathscr{E} with $p^*: (\mathscr{E} \downarrow B) \longrightarrow (\mathscr{E} \downarrow E)$ monadic. (good to pull back along)
- coverings (or central extensions): $f \in \mathscr{E}$ with $p^*(f)$ trivial for some monadic p. (locally trivial)
- normal extensions: monadic p with trivial kernel pair

Definitions

Special maps in Galois structures

• trivial coverings: $A \xrightarrow{\eta_A} HIA$ (cartesian wrt. l) $\mathcal{E}_{\Rightarrow f} \downarrow \qquad \downarrow HIf$ $B \xrightarrow{\eta_B} HIB$

- monadic extensions: $p: E \longrightarrow B$ in \mathscr{E} with $p^*: (\mathscr{E} \downarrow B) \longrightarrow (\mathscr{E} \downarrow E)$ monadic. (good to pull back along)
- coverings (or central extensions): $f \in \mathcal{E}$ with $p^*(f)$ trivial for some monadic p. (locally trivial)
- normal extensions: monadic p with trivial kernel pair projections.

Examples

- Groups with abelian groups:
 - monadic extensions: all regular epis.
 - central extensions as usual, kernel inside centre;
- topological example:
 - monadic extensions: surjective étale maps;
 - coverings: usual topological sense;
 - normal extensions: regular coverings.
- In many algebraic examples, central = normal.

- Groups with abelian groups:
 - monadic extensions: all regular epis.
 - central extensions as usual, kernel inside centre;
- topological example:
 - monadic extensions: surjective étale maps;
 - coverings: usual topological sense;
 - normal extensions: regular coverings.
- In many algebraic examples, central = normal.

- Groups with abelian groups:
 - monadic extensions: all regular epis.
 - central extensions as usual, kernel inside centre;
- topological example:
 - monadic extensions: surjective étale maps;
 - coverings: usual topological sense;
 - normal extensions: regular coverings.
- In many algebraic examples, central = normal.

- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When *E* is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of ${\mathscr F}$ in ${\mathscr C}$ ".
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When & is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of ${\mathscr F}$ in ${\mathscr C}$ ".
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When & is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of F in C".
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When & is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of ${\mathscr F}$ in ${\mathscr C}$ ".
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

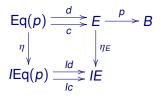
- admissible Galois structure: *I* preserves pullbacks along trivial coverings.
- When & is all maps, admissible = semi-left exact = Street fibration.
- \Rightarrow Trivial coverings are pullback-stable.
- Think "trivial coverings are pullback-closure of ${\mathscr F}$ in ${\mathscr C}$ ".
- If monadic extensions pullback-stable, then also normal extensions and coverings pullback-stable.

Definitions Galois group

Galois groupoid (Janelidze)

Take \mathscr{C} pointed and $p: E \longrightarrow B$ normal extension.

• Galois groupoid $Gal_{\Gamma}(p) = IEq(p)$



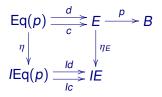
- Still groupoid, as *I* preserves defining pullbacks, because *d* and *c* trivial.
- Galois group Gal_Γ(p, 0) = Ker Id ∩ Ker Ic automorphisms at 0

Definitions Galois group

Galois groupoid (Janelidze)

Take \mathscr{C} pointed and $p: E \longrightarrow B$ normal extension.

• Galois groupoid $Gal_{\Gamma}(p) = IEq(p)$



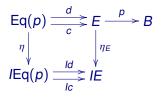
- Still groupoid, as *I* preserves defining pullbacks, because *d* and *c* trivial.
- Galois group Gal_Γ(p, 0) = Ker Id ∩ Ker Ic automorphisms at 0

Definitions Galois group

Galois groupoid (Janelidze)

Take \mathscr{C} pointed and $p: E \longrightarrow B$ normal extension.

• Galois groupoid $Gal_{\Gamma}(p) = IEq(p)$



- Still groupoid, as *I* preserves defining pullbacks, because *d* and *c* trivial.
- Galois group Gal_Γ(p, 0) = Ker Id ∩ Ker Ic automorphisms at 0

Definitions Galois group

Properties of Galois group functor

Morphisms in $NExt_{\Gamma}(\mathscr{C})$

induce

- homotopy on kernel pairs and Galois groupoids,
- same morphism $\operatorname{Gal}_{\Gamma}(p,0) \longrightarrow \operatorname{Gal}_{\Gamma}(p',0)$ on Galois group.
- $(f, 1_B): p \longrightarrow p$ induces identity on Galois group.

Definitions Galois group

Properties of Galois group functor

Morphisms in $NExt_{\Gamma}(\mathscr{C})$

induce

- homotopy on kernel pairs and Galois groupoids,
- same morphism $\operatorname{Gal}_{\Gamma}(p,0) \longrightarrow \operatorname{Gal}_{\Gamma}(p',0)$ on Galois group.
- $(f, 1_B): p \longrightarrow p$ induces identity on Galois group.

Definitions Galois group

Properties of Galois group functor

Morphisms in $NExt_{\Gamma}(\mathscr{C})$

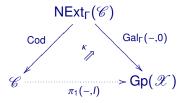
induce

- homotopy on kernel pairs and Galois groupoids,
- same morphism $\operatorname{Gal}_{\Gamma}(p,0) \longrightarrow \operatorname{Gal}_{\Gamma}(p',0)$ on Galois group.
- $(f, 1_B): p \longrightarrow p$ induces identity on Galois group.

Definition Kan extension

Fundamental group functor

Now assume that weakly universal normal extensions exist.



Definition (Janelidze)

Given $B \in \mathcal{C}$, pick weakly universal normal extension $u: U \longrightarrow B$, and let

$$\pi_1(B,I) = \operatorname{Gal}_{\Gamma}(u,0).$$

Functorial in B because of induced homotopies.

Julia Goedecke (Cambridge)

- Groups and abelian groups: get π₁(B, I) = H₂(B, Z) (group homology).
- One consequence of current work: this also works for higher homology groups.
- Topological example: get usual fundamental group.

- Groups and abelian groups: get π₁(B, I) = H₂(B, Z) (group homology).
- One consequence of current work: this also works for higher homology groups.
- Topological example: get usual fundamental group.

- Groups and abelian groups: get π₁(B, I) = H₂(B, Z) (group homology).
- One consequence of current work: this also works for higher homology groups.
- Topological example: get usual fundamental group.

Definition Kan extension

Natural transformation κ

$$\kappa \colon \pi_1(-, I) \circ \operatorname{Cod} \Longrightarrow \operatorname{Gal}_{\Gamma}(-, 0)$$

has components

$$\kappa_p \colon \pi_1(B, I) = \operatorname{Gal}_{\Gamma}(u, 0) \longrightarrow \operatorname{Gal}_{\Gamma}(p, 0)$$

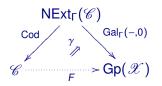
for normal extension $p: E \longrightarrow B$, induced by (any)

That is, $\kappa_p = \operatorname{Gal}_{\Gamma}((h, 1_B), 0)$.

Definition Kan extension

Universality of κ

Given



define $\alpha \colon F \Longrightarrow \pi_1(-, I)$ by $\alpha_B = \gamma_u \colon FB \longrightarrow \pi_1(B, I)$. Then

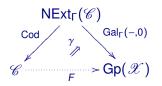
• α is natural by naturality of γ ;

- $\kappa_p \circ \alpha_{\text{Cod}\,p} = \gamma_p$ for all normal extensions *p*, by naturality of γ ;
- α is unique: given β with $\kappa_p \circ \beta_{\text{Cod}\,p} = \gamma_p$ for all normal p, get $\alpha_B = \beta_B$ as κ_u is an iso for weakly universal u.

Definition Kan extension

Universality of κ

Given



define $\alpha \colon F \Longrightarrow \pi_1(-, I)$ by $\alpha_B = \gamma_u \colon FB \longrightarrow \pi_1(B, I)$. Then

• α is natural by naturality of γ ;

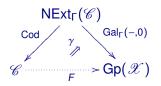
• $\kappa_p \circ \alpha_{\text{Cod}\,p} = \gamma_p$ for all normal extensions p, by naturality of γ ;

• α is unique: given β with $\kappa_p \circ \beta_{\text{Cod}\,p} = \gamma_p$ for all normal p, get $\alpha_B = \beta_B$ as κ_u is an iso for weakly universal u.

Definition Kan extension

Universality of κ

Given



define $\alpha \colon F \Longrightarrow \pi_1(-, I)$ by $\alpha_B = \gamma_u \colon FB \longrightarrow \pi_1(B, I)$. Then

• α is natural by naturality of γ ;

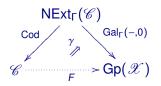
• $\kappa_p \circ \alpha_{\text{Cod}\,p} = \gamma_p$ for all normal extensions *p*, by naturality of γ ;

• α is unique: given β with $\kappa_p \circ \beta_{\text{Cod}\,p} = \gamma_p$ for all normal p, get $\alpha_B = \beta_B$ as κ_u is an iso for weakly universal u.

Definition Kan extension

Universality of κ

Given

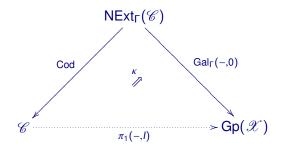


define $\alpha \colon F \Longrightarrow \pi_1(-, I)$ by $\alpha_B = \gamma_u \colon FB \longrightarrow \pi_1(B, I)$. Then

- α is natural by naturality of γ ;
- $\kappa_p \circ \alpha_{\text{Cod}\,p} = \gamma_p$ for all normal extensions *p*, by naturality of γ ;
- α is unique: given β with $\kappa_p \circ \beta_{\text{Cod}\,p} = \gamma_p$ for all normal p, get $\alpha_B = \beta_B$ as κ_u is an iso for weakly universal u.

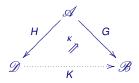
Kan extension

So indeed we have a Kan extension



Definition Kan extension

What we used

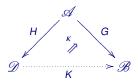


• $H(f) = H(g) \Rightarrow G(f) = G(g)$

- for all $D \in \mathscr{D}$ there is $U \in \mathscr{A}$ with H(U) = D and for all $A \in \mathscr{A}$, Hom $_{\mathscr{A}}(U, A) \longrightarrow \text{Hom}_{\mathscr{D}}(D, HA)$ is surjective.
- Define K(D) = G(U), well-defined and functorial by above properties.
- Get Kan-extension.

Kan extension

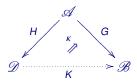
What we used



- $H(f) = H(g) \Rightarrow G(f) = G(g)$
- for all $D \in \mathcal{D}$ there is $U \in \mathcal{A}$ with H(U) = D and for all $A \in \mathcal{A}$, $\operatorname{Hom}_{\mathscr{A}}(U, A) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(D, HA)$ is surjective.
- Define K(D) = G(U), well-defined and functorial by above
- Get Kan-extension.

Kan extension

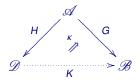
What we used



- $H(f) = H(g) \Rightarrow G(f) = G(g)$
- for all $D \in \mathcal{D}$ there is $U \in \mathcal{A}$ with H(U) = D and for all $A \in \mathcal{A}$, $\operatorname{Hom}_{\mathscr{A}}(U, A) \longrightarrow \operatorname{Hom}_{\mathscr{D}}(D, HA)$ is surjective.
- Define K(D) = G(U), well-defined and functorial by above properties.
- Get Kan-extension.

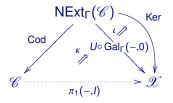
Categorical Galois Theory Definition Fundamental group Kan extension

What we used



- $H(f) = H(g) \Rightarrow G(f) = G(g)$
- for all $D \in \mathscr{D}$ there is $U \in \mathscr{A}$ with H(U) = D and for all $A \in \mathscr{A}$, Hom $_{\mathscr{A}}(U, A) \longrightarrow \text{Hom}_{\mathscr{D}}(D, HA)$ is surjective.
- Define K(D) = G(U), well-defined and functorial by above properties.
- Get Kan-extension.

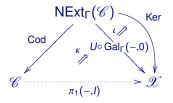
Get also Kan extension



• For $p: E \longrightarrow B$ normal, $U \circ \operatorname{Gal}_{\Gamma}(p, 0) = \operatorname{Ker} p \cap \operatorname{Ker} \eta_E$.

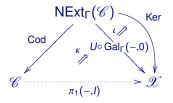
- So ι_p : Ker $p \cap$ Ker $\eta_E \longrightarrow$ Ker p is a mono.
- We hope that any natural transformation *F*_☉ Cod ⇒ Ker factors over *U*_☉ Gal_Γ(−, 0). (true in the examples)
- In any case, can show another way that this is also a Kan extension.

Get also Kan extension



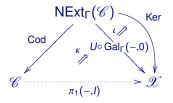
- For $p: E \longrightarrow B$ normal, $U \circ \operatorname{Gal}_{\Gamma}(p, 0) = \operatorname{Ker} p \cap \operatorname{Ker} \eta_E$.
- So ι_p : Ker $p \cap$ Ker $\eta_E \longrightarrow$ Ker p is a mono.
- We hope that any natural transformation *F*_☉ Cod ⇒ Ker factors over *U*_☉ Gal_Γ(−, 0). (true in the examples)
- In any case, can show another way that this is also a Kan extension.

Get also Kan extension



- For $p: E \longrightarrow B$ normal, $U \circ \operatorname{Gal}_{\Gamma}(p, 0) = \operatorname{Ker} p \cap \operatorname{Ker} \eta_E$.
- So ι_p : Ker $p \cap$ Ker $\eta_E \longrightarrow$ Ker p is a mono.
- We hope that any natural transformation *F*_○ Cod ⇒ Ker factors over *U*_○ Gal_Γ(−, 0). (true in the examples)
- In any case, can show another way that this is also a Kan extension.

Get also Kan extension



- For $p: E \longrightarrow B$ normal, $U \circ \operatorname{Gal}_{\Gamma}(p, 0) = \operatorname{Ker} p \cap \operatorname{Ker} \eta_E$.
- So ι_p : Ker $p \cap$ Ker $\eta_E \longrightarrow$ Ker p is a mono.
- We hope that any natural transformation *F*_○ Cod ⇒ Ker factors over *U*_○ Gal_Γ(−, 0). (true in the examples)
- In any case, can show another way that this is also a Kan extension.

Thanks for listening!



Julia Goedecke (Cambridge)