How to read a paper for a Part III Essay

Julia Goedecke

Graduate Education Officer, DPMMS

23 November 2016, Wednesday Part III talks

Overview

"Begin at the beginning," the King said, very gravely, "and go on till you come to the end: then stop."

- Lewis Carroll, Alice in Wonderland.

This does not work for academic papers!

Overview

Five Steps

- Step 1: Quick read through What is the paper about?
- Step 2: Consider Digest what it's about.
- Step 3: "Read around" Gather other viewpoints.
- Step 4: 2nd read through Solidify your understanding.
- Step 5: Nitty gritty read through Drill deeper.

It's much easier to read the details in a paper when you already have a rough idea about the main message.

Choosing Essay Topic

Before reading papers

- Read essay topic descriptions.
- Perhaps read abstracts of some indicated papers.
- Talk to Essay Setter. (Sometimes this is "group meeting".)

Interested in several topics?

- It's ok to attend several such "first meetings".
- Attending first meeting doesn't commit you to the essay.
- Get a feel for the "style of maths" (and perhaps "style of papers") involved in the topics.
- Which of those are you willing/interested to "wrestle" with?

Step 1: Quick read through

Take 1/2 - 1h.

Aim: What is this paper about? Main result(s)?

Get a feel for the style of maths needed.

(Within main area? Using links to other areas? ...)

Pure Maths

- Abstract
- Introduction: in detail
- Main results
- Definitions
- Constructions

Applied Maths

- Abstract
- Introduction
- Look at pictures/graphs
- Conclusions
- Think about how they might have got there

Ok to do (minor version of) this for main paper of 2-3 essays.

Step 2: Consider

- What is the paper about?
- Outline of the paper?
- Main results / theme?
- Where is the "meat" of the paper?
- Why is it interesting/important?
- Which are the bits you'll have to "unpack"?

Can you already see what the main message of the paper is? (Not nec. possible at this point: but keep thinking about it.)

Step 2: Consider

Pure Maths: 5 minute explanation of proof of main result

- Can you break it down into some "sub-theorems"?
- Does the proof "translate" the problem into another area?
- Is it a "here is the construction of the thing we say exists"?
- Or is it "if that existed, then this other thing would exist, but we know it doesn't"?

Stats: main algorithm

- What is/are the main idea(s) for the algorithm?
- Can you describe the key steps of the algorithm?
- What is the intuition for different steps?
- Intuitively, what might the conditions be needed for?
- What simple settings/examples could this be applied to?
 What results would it give?

Step 2: Consider

Pure Maths: 5 minute explanation of proof of main result

- Can you break it down into some "sub-theorems"?
- Does the proof "translate" the problem into another area?
- Is it a "here is the construction of the thing we say exists"?
- Or is it "if that existed, then this other thing would exist, but we know it doesn't"?

Stats: main algorithm

- What is/are the main idea(s) for the algorithm?
- Can you describe the key steps of the algorithm?
- What is the intuition for different steps?
- Intuitively, what might the conditions be needed for?
- What simple settings/examples could this be applied to? What results would it give?

Step 3: "Read around"

Aim: Get variety of view-points.

Get background, earlier (easier) versions of results,
context the work sits in.

How is this paper used in other work?

Read (as above)

- Papers referred to in the paper.
- Other papers by same author(s) in same area.
- Papers which use/refer to this paper.
 - (→ MathSciNet)

Step 4: 2nd read through

Pure Maths

- Read results, definitions, constructions in more detail.
- Take example/simple case along.
- Skip technical details.

Applied Maths

Work through middle of paper

- Understand methods used
- see which equations were used
- what approximations were made

Iterate 2-4 as needed.

Decisions

At some point in this iteration:

- Will I stick with the essay?
- Which bits will I "unpack" further?
- What direction will I take my essay?
- Make outline.

Take outline to Essay Setter: discuss.

Step 5: Nitty gritty read through

Pure Maths

- Look in detail at hypotheses: where used?
- Technical or "fundamental" reasons?
- Any "implicit" hypotheses?
- Consider with relaxed conditions
 "What happens if"

Applied Maths

- Look in detail at methods and approximations
- For which parameters does this method apply?
- When does it not apply?

Next term: From Outline to Essay.

Go and enjoy reading research papers!

