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Abstract. We use recent results on simplicial objects in relative Mal’tsev categories and a
classical comparison theorem to obtain homology with coefficients in a relative semi-abelian

category as defined by T. Janelidze.
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1. Introduction

In a recent paper [6] with T. Everaert and T. Van der Linden, we define relative Mal’tsev
categories and show amongst other things that in such a category every simplicial object satisfies
a relative version of the Kan property. Here we use this result to define homology with coefficients
in a relative semi-abelian category, as defined by T. Janelidze [14].

Resolutions in terms of exactness. We first study simplicial resolutions in the context of
relative homological categories. Section 2 gives the relevant definitions, in particular defining an
E-simplicial object to be one where all face operators are in the class E which makes the theory
relative. In Section 3 we compare conditions for an augmented simplicial object A to be a resolution
to exactness conditions on the Moore complex of A. We define a chain complex to be E-exact when
the factorisations to the kernels are morphisms in E , in order to prove Theorem 3.9:

an augmented E-simplicial object is an E-resolution if and only if its Moore nor-
malisation is E-exact.

This is often used in the absolute case of homological categories and appears in some form in [18],
but as far as we know it has not been stated in exactly this form before. When the pair (A, E) is
relatively semi-abelian, we can rephrase the above result to say that

an augmented E-simplicial object A is an E-resolution if and only if HnA = 0 for
n ≥ 1 and H0A = A−1

(Theorem 4.11). Furthermore, any short E-exact sequence of E-simplicial objects induces a long
E-exact homology sequence (Theorem 4.12). Analogously to the absolute case, this translation into
homology crucially relies on the fact that the Moore complex of an E-simplicial object in a relative
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semi-abelian category is E-proper (Lemma 4.9), meaning that every morphism in it factors as an
extension followed by an E-normal monomorphism, a kernel of an extension.

Homology functors. In Section 5 we prove that in a category (A, E) satisfying (E1)–(E3) (see
Definition 2.1), two projective E-resolutions of an object A give rise to the same homology with
coefficients in a functor I : A → B to a relative semi-abelian category (B,F). This makes it possible
to define the homology of an object, as in Definition 5.12, and thus obtain homology functors

Hn+1(−, I) : A → B.
As in the classical situation we go via the fact that homotopic morphisms between simplicial objects
give rise to the same homology (Corollary 5.6). To prove this result, we show that the kernel of the
projection of a cocylinder object ε0 : AI → A is an F-exact F-simplicial object (Proposition 5.5),
making use of the fact that every F-simplicial object in the relative semi-abelian category (B,F)
is F-Kan.

2. Resolutions in relative homological categories

We first give some necessary definitions and recall useful results.

Relative homological categories. The first part of this paper is set in the context of relative
homological categories as defined by T. Janelidze [12]. We make only a small change: we do not
need the existence of all cokernels.

Definition 2.1. Let A be a pointed finitely complete category and let E be a class of normal
epimorphisms in A. The pair (A, E) is called a relative homological category if it satisfies the
following axioms:

(E1) E contains all isomorphisms;
(E2) E is pullback-stable;
(E3) E is closed under composition;
(E4) if f ∈ E and g◦f ∈ E then g ∈ E ;
(E5) given a diagram in A

0 ,2 K ,2

k

��

A
f ,2

a

��

B ,2 0

0 ,2 K ′ ,2 A′
f ′

,2 B ,2 0

with short exact rows and f and f ′ in E , if k ∈ E then also a ∈ E .
(F) if a morphism f in A factors as f = e◦m with m a monomorphism and e ∈ E , then it also

factors (essentially uniquely) as f = m′◦e′ with m′ a monomorphism and e′ ∈ E .

Example 2.2. When E is the class of all regular epimorphisms in a regular category A, then
(A, E) is a relative homological category if and only if A is homological.

Any relative semi-abelian category (Definition 4.6) is a relative homological category. For ex-
ample, if A is semi-abelian and E is the class of central extensions in the sense of Huq, closed under
composition, then (A, E) is relatively semi-abelian [13, Proposition 5.3.2]. That is, any morphism
in E is a composite of regular epimorphisms f : A→ B with [K[f ], A] = 0, where [K[f ], A] is the
commutator of K[f ] and A in the sense of Huq [9]. Another relative homological category (A, E) is
given by taking E to be the trivial extensions as defined by categorical Galois theory [10] induced
by a Birkhoff subcategory B of a semi-abelian category A. This will be explained by T. Janelidze
in her forthcoming paper Central extensions generate a relative semi-abelian category structure.

Morphisms in the class E will be called extensions. We write ExtA for the full subcategory of
the category ArrA of arrows in A determined by the elements of E . Any such class of extensions
E gives rise to double extensions, which were first defined in the context of groups in [11, 4] and
appeared in a categorical context in [2, 7, 5].
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Definition 2.3. Let E be a class of extensions satisfying axioms (E1)–(E3). A double extension
is a commutative square

A
f ,2

a

��

B

b

��
A′

f ′
,2 B′

in A where a, b, f , f ′ and the induced morphism 〈a, f〉 : A→ A′ ×B′ B to the pullback of b and
f ′ are extensions. We denote the class of double extensions thus obtained by E1.

Any extension, being a normal epimorphism, is the cokernel of its kernel. Hence the following
relative concept of short exact sequence makes sense [12].

Definition 2.4. A morphism in a relative homological category (A, E) is an E-normal monomor-
phism when it is the kernel of an extension. A short E-exact sequence consists of an E-normal
monomorphism followed by its cokernel (an element of E), and is usually denoted

0 ,2 K ,2 A
f ,2 B ,2 0. (A)

For any type of graded object we use this notion in the degreewise sense.

E-normal monomorphisms share various stability properties with normal monomorphisms. For
instance:

Lemma 2.5. In a relative homological category, if an E-normal monomorphism k factors as a
morphism l followed by a monomorphism m, then l is an E-normal monomorphism.

Proof. If k is a kernel of e ∈ E then l is a kernel of e′ ∈ E , where m′◦e′ = e◦m is the factorisation
which exists by (F). �

We also obtain the following characterisation of double extensions.

Proposition 2.6 ([5, Lemma 1.7]). Let (A, E) satisfy (E1)–(E3) and (E5). Given a diagram in
A with short E-exact rows and a and b in E

0 ,2 K ,2

k

��

A
f ,2

a

��

B

b

��

,2 0

0 ,2 K ′ ,2 A′
f ′

,2 B′ ,2 0,

(B)

then k is in E if and only if the right hand square is a double extension.

Proof. The right-to-left implication follows from (E2), and the other direction uses (E5). �

We also need the following basic result which is well known to hold in the absolute case [1, Propo-
sition 7]. Its non-trivial implication is an immediate consequence of the E-Short Five Lemma [12],
which itself follows from (E5) and (E1).

Proposition 2.7. Let (A, E) satisfy (E1)–(E3) and (E5). In a diagram such as (B) with short
E-exact rows, k is an isomorphism if and only if the right hand square is a pullback. �

Note that for this proposition, we do not require the morphisms a and b in the diagram (B) to
be extensions.
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Resolutions. To define resolutions, which will play a crucial role throughout the paper, we first
have to define simplicial objects and the weaker semi- and quasi-simplicial objects.

Definition 2.8 (Augmented semi-simplicial objects). Let ∆s be the category which has as ob-
jects the finite ordinals n ≥ 0 and as morphisms injective order-preserving maps. We may call it
the augmented semi-simplicial category. Given a category A, an (augmented) semi-simplicial
object in A is a functor

A : (∆s)
op → A.

We denote the objects A(n) by An−1, and the image of the inclusion n→ n+ 1 which leaves out i
by ∂i, so that an augmented semi-simplicial object A corresponds to the following data: a sequence
of objects (An)n≥−1 with face operators (or faces) (∂i : An → An−1)0≤i≤n for 0 ≤ n,

· · ·
,2,2,2,2 A2 ∂1

,2
∂0 ,2

∂2

,2 A1

∂0 ,2
∂1

,2 A0
∂0 ,2 A−1

subject to the identity

∂i◦∂j = ∂j−1◦∂i

for i < j. The morphism ∂0 : A0 → A−1 is called the augmentation of A.
We write SsA for the category of augmented semi-simplicial objects in A, which is of course the

functor category Fun((∆s)
op,A).

Definition 2.9 (Augmented quasi-simplicial objects). We can add degeneracy operators (or de-
generacies) (σi : An → An+1)0≤i≤n for 0 ≤ n to an (augmented) semi-simplicial object to obtain
an (augmented) quasi-simplicial object A in A, satisfying the identities

∂i◦σj =


σj−1◦∂i if i < j

1 if i = j or i = j + 1

σj◦∂i−1 if i > j + 1.

The augmented quasi-simplicial objects in A with the natural morphisms between them form a
category SqA which may be seen as a functor category Fun((∆q)op,A).

Definition 2.10. If the degeneracies in an augmented quasi-simplicial object A also satisfies

σi◦σj = σj+1◦σi

for all i ≤ j, then A is an (augmented) simplicial object. Of course this is just a functor from
∆op to A where ∆ is the category of finite ordinals with all order-preserving maps.

Note that this notation of including 0 in ∆ agrees with MacLane [15], though algebraic topol-
ogists usually don’t include 0 because they talk about non-augmented simplicial objects. This is
the reason for the numbering shift A(n) = An−1.

In the course of the paper we will need the following induced semi-simplicial object.

Notation 2.11. Let A be an augmented semi-simplicial object in A. It induces another augmented
semi-simplicial object A− with

A−n−1 = An and ∂−i = ∂i+1 : An+1 → An,

for n ≥ 0 and 0 ≤ i ≤ n. This is the augmented semi-simplicial object obtained from A by leaving
out A−1 and all ∂0 : An → An−1. The left out ∂0 combine to give a morphism ∂ = (∂0)n from A−
to A.

When A is a (quasi)-simplicial object, the degeneracy operators can be shifted in the same way
to give a (quasi)-simplicial object A− and a morphism ∂ : A− → A of (quasi)-simplicial objects.

As we are dealing with a class of extensions E , we are mainly interested in the following special
(semi)-simplicial objects.
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Definition 2.12. An (augmented) E-semi-simplicial object A is an (augmented) semi-sim-
plicial object with all faces ∂i in E . We write Ss(A, E) for the induced category and Sq(A, E) for
the category of augmented E-quasi-simplicial objects.

In this context, Proposition 2.6 implies

Proposition 2.13. Let (A, E) satisfy (E1)–(E3) and (E5). Given a morphism of (augmented)
E-semi-simplicial objects f which is degreewise in E, consider the induced short E-exact sequence
of (augmented) semi-simplicial objects

0 ,2K ,2A
f ,2B ,20. (C)

The kernel K is an (augmented) E-semi-simplicial object if and only if f is an (augmented) E1-
semi-simplicial object in ExtA. �

To define resolutions, we will use the notion of a simplicial kernel.

Definition 2.14 (Simplicial kernels). Let

(fi : X → Y )0≤i≤n

be a sequence of n + 1 morphisms in the category A. A simplicial kernel of (f0, . . . , fn) is a
sequence

(ki : K → X)0≤i≤n+1

of n + 2 morphisms in A satisfying fikj = fj−1ki for 0 ≤ i < j ≤ n + 1, which is universal with
respect to this property. In other words, it is the limit for a certain diagram in A, giving a universal
object satisfying the (semi)-simplicial identities.

For example, the simplicial kernel of one morphism is just its kernel pair. If A has all pullbacks,
then simplicial kernels exist, as they can be formed by successive pullbacks (see, for instance, [16]).

Definition 2.15. An (augmented) semi-simplicial object A is said to be E-exact at An−1 when
the simplicial kernel KnA of (∂i : An−1 → An−2)0≤i≤n−1 exists and the factorisation An → KnA
is in E . (Here we also write K0A = A−1, i.e. A is E-exact at A−1 if ∂0 : A0 → A−1 is in E .)

An augmented semi-simplicial object A is called an E-resolution (of A−1) when A is E-exact
at An for all n ≥ −1.

Notice that an E-resolution is always an E-semi-simplicial object. There is a connection between
E-resolutions and E1-resolutions:

Lemma 2.16 ([6, Corollary 2.19]). An augmented semi-simplicial object A is an E-resolution if
and only if the augmented semi-simplicial object of arrows ∂ : A− → A is an E1-resolution. �

E-resolutions are studied in more depth in the paper [6].

3. Resolutions via the Moore complex

The aim of this section is to analyse simplicial resolutions in terms of an associated chain
complex. For the whole section, (A, E) will be a relative homological category, if not explicitly
stated otherwise.

In semi-abelian categories, the Moore complex or normalised chain complex of a simplicial object
is commonly used to detect exactness of the given simplicial object (see, for instance, [8]). In our
setting we use the notion of E-exactness for a chain complex and are thus able to link this to
E-exact E-simplicial objects.

Definition 3.1. A chain complex C in A is a collection of morphisms

(dn : Cn → Cn−1)n≥0

such that dn◦dn+1 = 0, for all n ≥ 0. The category of chain complexes in A (with, as morphisms,
the obvious commutative diagrams) is denoted by ChA.
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Let C be a chain complex and n ≥ 0. C is said to be E-exact at Cn when the factorisation of
dn+1 over the kernel K[dn] of dn is in E .

· · · ,2 Cn+1

d′n+1∈E
�$

dn+1 ,2 Cn
dn ,2 Cn−1

,2 . . .

K[dn]
Ker dn

:D������

We also say that C is E-exact at C−1 when d0 is in E . The chain complex C is E-exact when it
is exact at Cn for all n ≥ −1.

Remark 3.2. Our definition of exactness at C−1 is equivalent to C0 → C−1 → 0 being E-exact
at C−1.

For instance, a sequence of morphisms such as (A) above where the middle pair composes to zero
is a short E-exact sequence if and only if it is an E-exact chain complex, which justifies the notation
for short E-exact sequences. (More precisely, its exactness at B means that f ∈ E , exactness at
A says that K → A factors as an extension followed by a kernel of f , and exactness at K ensures
that this extension is an isomorphism.)

Definition 3.3 (Moore normalisation). Let (A, E) be a relative homological category. The nor-
malisation functor

N: Ss(A, E)→ ChA
turns an augmented E-semi-simplicial object A into the Moore complex NA of A, the chain
complex with N−1A = A−1, N0A = A0,

NnA =

n−1⋂
i=0

K[∂i : An → An−1]

and differentials
dn = ∂n◦

⋂
i

Ker ∂i : NnA→ Nn−1A

for n ≥ 1, and d0 = ∂0 : A0 → A−1. That is, dn is the morphism induced by ∂n via

NnA
dn ,2

��

Nn−1A

��
An

∂n

,2 An−1.

Notice that the Moore complex defined here differs very slightly from its usual form: we have
added an object N−1A, such that the augmentation A0 → A−1 of an augmented E-semi-simplicial
object appears in the complex. This makes it easier to compare E-resolutions and their Moore com-
plex in a context not using homology. However, when we can use homology, as in Definition 4.10,
this addition to the Moore complex is not needed.

We now recall a very useful tool for working with the Moore complex of a simplicial object.

Notation 3.4. Let A be an augmented E-semi-simplicial object and recall the definition of A−
from Notation 2.11. The kernel of ∂ : A− → A is denoted by ΛA. Thus we obtain a short E-exact
sequence of augmented semi-simplicial objects:

0 ,2 ΛA ,2 A−
∂ ,2 A ,2 0

Remark 3.5. By Proposition 2.13, the augmented semi-simplicial object ΛA is an augmented
E-semi-simplicial object if and only if ∂ : A− → A is an augmented E1-semi-simplicial object in
ExtA. Similarly, since taking kernels commutes with taking simplicial kernels, Proposition 2.6 tells
us that ΛA is an E-resolution if and only if ∂ : A− → A is an E1-resolution, which by Lemma 2.16
is equivalent to A being an E-resolution.
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The following lemma is classical in the absolute setting and follows easily from the definition.

Lemma 3.6. Let (A, E) be a relative homological category. If ∂ : A− → A is an E1-semi-simplicial
object then

Nk−1ΛA = NkA and dΛA
k = dAk+1

for all k ≥ 1. �

Remark 3.7. If A is an E-quasi-simplicial object, then ∂ : A− → A is an E1-semi-simplicial object,
which follows from the relative Mal’tsev axiom given in [6], and the lemma above applies. (The
numbering of axioms in [6] differs slightly from the one here, using (E5) for the relative Mal’tsev
axiom and (E5+) for our (E5).) Notice that we do not need the augmentation of an augmented
quasi-simplicial object to be in E resp. E1 for this lemma.

When restricted to E-quasi-simplicial objects, the Moore normalisation functor is exact. This
is a crucial result for the long exact homology sequence in the following section.

Proposition 3.8. The normalisation functor

N: Sq(A, E)→ ChA
is exact: it sends short E-exact sequences of augmented E-quasi-simplicial objects to short E-exact
sequences of chain complexes in A.

Proof. Let (C) be a short E-exact sequence of augmented E-quasi-simplicial objects. Then for
n ∈ {−1, 0}, the sequence

0 ,2 NnK ,2 NnA
Nnf ,2 NnB ,2 0

is already short E-exact in A. Using the relative 3×3-Lemma [12, Lemma 4.3] degreewise on the
diagram of E-quasi-simplicial objects

0

��

0

��

0

��
0 ,2 ΛK

��

,2 ΛA

��

Λf ,2 ΛB ,2

��

0

0 ,2 K− ,2

∂

��

A−
f− ,2

∂

��

B−

∂

��

,2 0

0 ,2 K ,2

��

A
f

,2

��

B ,2

��

0

0 0 0

we see that the top row is also a short E-exact sequence. (Notice that ΛK, ΛA and ΛB are indeed
E-quasi-simplicial objects by Proposition 2.13, as K, A and B are E-quasi-simplicial objects and so
each ∂ is an E1-semi-simplicial object.) The result now follows by induction via Lemma 3.6. �

Lemma 3.6 also allows us to use induction in the next theorem, our main result of this section.

Theorem 3.9. Let (A, E) be a relative homological category. An augmented E-(quasi)-simplicial
object A in A is an E-resolution if and only if its normalisation NA is E-exact.

Proof. ⇒ Given any E-resolution A, the morphism

d0 = ∂0 : N0A = A0 −→ A−1 = N−1A
is always an extension, which gives E-exactness at N−1A. Since ΛA is also an E-resolution,

dΛA
0 : N0ΛA = N1A −→ K[dA0 ] = N−1ΛA
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is in E , which means that NA is E-exact at N0A.

· · · ,2 N0ΛA = N1A
dA

1 ,2

dΛA
0

�$

A0

dA
0=∂0 ,2 A−1

K[dA0 ]

Ker ∂0

:D������

Now suppose for some n ≥ 1 that, given any E-resolution A, the chain complex NA is E-exact at
Nn−1A, i.e., the factorisation of dn : NnA→ Nn−1A over K[dn−1] is in E . In particular, this is true
for ΛA, so using Lemma 3.6 the factorisation of

dΛA
n = dAn+1 : NnΛA = Nn+1A −→ NnA = Nn−1ΛA

over K[dΛA
n−1] = K[dAn] is in E . Hence the result holds by induction.

⇐ If NA is E-exact then

∂0 = d0 : N0A = A0 −→ A−1 = N−1A

is in E by exactness at N−1A. Now assume for n ≥ 0 that if NA is E-exact then A is an E-resolution
up to level n. In particular, ΛA is an E-resolution up to level n, since NΛA is also E-exact by
Lemma 3.6 (noting also the relationship between dA1 and dΛA

0 shown above). Using Remark 3.5
and Lemma 2.16, this implies that A is an E-resolution up to level n + 1, so the result holds by
induction. �

4. Homology of simplicial objects

As in the absolute case of semi-abelian categories, we will define homology of simplicial objects
by going via the Moore complex. We now go through the separate steps needed for this definition.

Homology of E-proper chain complexes. Analogously to homology of proper chain complexes
in homological categories, we can define homology for E-proper chain complexes.

Definition 4.1. A morphism in a relative homological category (A, E) is E-proper when it factors
as an extension followed by an E-normal monomorphism. A chain complex C in (A, E) is E-proper
when the morphism dn : Cn → Cn−1 is E-proper for every n ≥ 0.

For instance, an E-exact chain complex is always E-proper.

Definition 4.2 (Homology of E-proper chain complexes). Given an E-proper chain complex C in
(A, E) and n ≥ 0, we define the nth homology object HnC to be the cokernel of the factorisation
d′n+1 of dn+1 over K[dn].

Cn+1
dn+1 ,2

d′n+1 �$?
??

??
? Cn

dn ,2 Cn−1

K[dn]

Ker dn

:D������

Coker d′n+1

,2 HnC

Note that the cokernel of d′n+1 indeed exists and is in fact an extension — to see this, one uses
Lemma 2.5 as in the following proof. Of course, this definition, which is exactly the same as in the
absolute case, only makes sense here if it detects E-exactness of the complex, which we now prove:

Proposition 4.3. An E-proper chain complex C is E-exact at Cn if and only if HnC is zero.

Proof. As C is E-proper, we can factor dn+1 as an extension en+1 followed by an E-normal
monomorphism kn+1. As any extension is a (normal) epimorphism, this E-normal monomorphism
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kn+1 factors over K[dn] by a monomorphism m.

In+1
kn+1

�$?
??

??
?

m

��

Cn+1 dn+1
,2

d′n+1 �$?
??

??
?

en+1

∈E

:D������
Cn

dn ,2 Cn−1

K[dn]
Ker dn

:D������

By Lemma 2.5, m is an E-normal monomorphism. Note that we also have m◦en+1 = d′n+1 as
Ker dn is a monomorphism. As en+1 is a (normal) epimorphism, the cokernel of m (an extension)
is the same as the cokernel of d′n+1, and furthermore m is the kernel of its cokernel. Hence HnC = 0
if and only if m is an isomorphism, and thus if and only if C is E-exact at Cn. �

Note that this proposition does not quite follow from the absolute case: as the definition of
homology is the same and any E-proper chain complex C is certainly proper, the result in the
absolute case implies that an E-proper chain complex is exact at Cn if and only if HnC is zero.
However, in this result we show that it is in fact E-exact, which is more restrictive than just exact.

As in the absolute case [8, Proposition 2.4], any short exact sequence of proper chain complexes
induces a long exact homology sequence. For this we first introduce the dual definition of homology
of a chain complex.

Lemma 4.4. Given an E-proper chain complex C in (A, E),

Cn+1
dn+1 ,2 Cn

dn ,2

Coker dn+1 �$?
??

??
? Cn−1

HnC
Ker d′′n

,2 Cok[dn+1]

d′′n

:D������

the nth homology object HnC of C may also be obtained as the kernel of the factorisation d′′n of dn
over Cok[dn+1].

Proof. In the diagram

Cn+1

d′n+1 �$?
??

??
?

dn+1 ,2 Cn
dn ,2

Coker dn+1

??

�$?
?

Cn−1

K[dn]

Ker dn��

:D��

Coker d′n+1
�� #+

Cok[dn+1]

d′′n

:D������

Cok[d′n+1]
d

,2

3;ooooo
K[d′′n]

Ker d′′n

LR

which displays the two constructions, the induced comparison morphism d between them is an
isomorphism. Indeed, the dotted arrow induced by taking kernels is an extension, as it is a pullback
of the extension Coker dn+1, so d is an extension by (E4). On the other hand, taking cokernels
induces the broken arrow in the diagram, and the thus obtained commutative square is a pullback
by Proposition 2.7 (recall from the proof of Proposition 4.3 that K[Coker d′n+1] = K[Coker dn+1]).
As a consequence, the kernel of the extension d is zero, being isomorphic to the kernel of Ker dn.
This again uses Proposition 2.7, this time in the other direction. �

Proposition 4.5 (Long exact homology sequence). In a relative homological category (A, E), any
short E-exact sequence of E-proper chain complexes

0 ,2 C ,2 D ,2 E ,2 0

gives rise to a long E-exact homology sequence

· · · ,2Hn+1C ,2Hn+1D ,2Hn+1E ,2HnC ,2 · · · ,2H0E ,20
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in A.

Proof. Lemma 4.4 assures that for an E-proper chain complex C, its homology may be computed
as expressed in the following diagram.

· · · ,2 Cn+2
dn+2 ,2 Cn+1

dn+1 ,2

Coker dn+2

��

Cn
dn ,2 Cn−1

,2 · · ·

Hn+1C
Ker dn+1

,2 Cok[dn+2]
dn+1

,2 K[dn]

Ker dn

LR

Coker dn+1

,2 HnC

Note that the uniquely induced morphism dn+1 is E-proper by Lemma 2.5. As in the abelian case,
one uses the Snake Lemma (here in its relative version [12, Lemma 4.2]) twice to obtain an E-exact
sequence

Hn+1C ,2Hn+1D ,2Hn+1E ,2HnC ,2HnD ,2HnE

in A for every n ≥ 0. �

Relative semi-abelian categories. In order for homology of simplicial objects to make sense,
we have to go to the stronger setting of relative semi-abelian categories also introduced by T. Ja-
nelidze [14], so that the Moore complex of a simplicial object is E-proper. The definition of these
categories is usually given via some properties of relations, but we give an alternative equivalent
definition as we do not need relations for anything else.

Definition 4.6. [14] A relative semi-abelian category is a relative homological category (A, E)
where A has binary coproducts and the pushout of an extension by an extension exists and is a
double extension.

This definition is equivalent to the one in [14] via [14, Theorem 3.3] and the arguments for [3,
Theorem 5.7].

Via Theorem 3.5 in [14], Axiom (F) implies:

Lemma 4.7. If a morphism f in a relative semi-abelian category (A, E) factors as f = e◦m with
m an E-normal monomorphism and e ∈ E, then it also factors (essentially uniquely) as f = m′◦e′

with m′ an E-normal monomorphism and e′ ∈ E. �

We also need a property of E-normal monomorphisms which holds in relative semi-abelian
categories.

Lemma 4.8. In a relative semi-abelian category, finite intersections of E-normal monomorphisms
are E-normal monomorphisms.

Proof. This follows from the part of the definition which says that a pushout of an extension by
an extension exists and is a double extension. �

Homology of E-simplicial objects. In order to define homology of E-simplicial objects, we must
first show that we can in fact apply the definition of homology above to the Moore complex of any
E-simplicial object. We use the following relative version of [8, Theorem 3.6].

Lemma 4.9. If A is an augmented E-semi-simplicial object in a relative semi-abelian category
(A, E) then the Moore complex NA of A is E-proper.

Proof. Since ∂n+1 is in E , the composite morphism d in the diagram

Nn+1A

d

�$

⋂
i Ker ∂i,2

dn+1

��

An+1

∂n+1

��
NnA ⋂

i Ker ∂i

,2 An
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factors as an extension e followed by a monomorphism m. Lemma 4.8 states that the top map⋂
i Ker ∂i : Nn+1A→ An+1 is an E-normal monomorphism, so that the monomorphism m is E-

normal by Lemma 4.7. Lemma 2.5 now implies that the factorisation l of m over NnA is also an
E-normal monomorphism. �

Thus now we can define:

Definition 4.10 (Homology of E-semi-simplicial objects). Let A be an (augmented) E-semi-
simplicial object in a relative semi-abelian category (A, E). The nth homology object of A
is defined by

HnA = HnNA
for n ≥ 1, and

H0A = Cok[d1 : N1A→ A0]

for n = 0.

Via Proposition 4.3, this allows us to rephrase Theorem 3.9 in terms of homology.

Theorem 4.11. In a relative semi-abelian category (A, E), an augmented E-(quasi)-simplicial
object A in A is an E-resolution if and only if HnA = 0 for all n ≥ 1 and H0A = A−1. �

We then also have a long exact homology sequence for simplicial objects:

Theorem 4.12 (Long exact homology sequence, simplicial case). In a relative semi-abelian cate-
gory (A, E), any short E-exact sequence of E-quasi-simplicial objects

0 ,2 K ,2 A ,2 B ,2 0

gives a long E-exact homology sequence

· · · ,2Hn+1K ,2Hn+1A ,2Hn+1B ,2HnK ,2 · · · ,2H0B ,20

in A.

Proof. This follows from Proposition 4.5 via Proposition 3.8. �

5. Homology with coefficients in a relative semi-abelian category

When dealing with homology of objects (rather than complexes), a very important aspect is its
independence of a chosen projective resolution. In this section we show that any two projective
E-resolutions of an object are simplicially homotopic and thus give rise to the same homology when
sent into a relative semi-abelian category by a functor preserving extensions.

The relative Kan property. We will need a particular property of simplicial objects in relative
semi-abelian categories which comes from relative Mal’tsev categories [6]. We first define this, a
relative Kan property, which is a slight adaptation of the Kan property in a regular category given
in [3].

Definition 5.1. Let A be a semi-simplicial object and consider n ≥ 2 and 0 ≤ k ≤ n. The
object of (n, k)-horns in A is an object A(n, k) together with arrows ai : A(n, k)→ An−1 for
i ∈ {0, . . . , n} \ {k} satisfying

∂i◦aj = ∂j−1◦ai for all i < j with i, j 6= k

which is universal with respect to this property. We also define A(1, 0) = A(1, 1) = A0.
A semi-simplicial object is E-Kan when all objects A(n, k) exist and all comparison mor-

phisms An → A(n, k) are in E . (In particular, the comparison morphisms to the (1, k)-horns
are ∂0 : A1 → A(1, 0) and ∂1 : A1 → A(1, 1).)

Notice again that if A has all pullbacks, then all horn objects exist.
We now use a result from [6] which is stated there in a slightly different context, but it is ex-

plained in Section 4 in the same paper that it also applies to a context of which relative homological
categories (and thus relative semi-abelian categories) form an example.
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Theorem 5.2. Let (A, E) be a relative homological category. Then every E-simplicial object is
E-Kan.

Proof. This follows from Theorem 3.11 in [6] together with the explanations in Section 4 of the
same paper, which ensure that relative homological categories form an example of the situation
considered there. In fact, relative homological categories are relatively Mal’tsev in the sense of
Definition 4.8 in [6]. �

Simplicial homotopy. We first prove an important property of semi-simplicial homotopy in a
relative homological context: the kernel of a cocylinder projection ε0 : AI → A is always an E-
resolution.

Remark 5.3. In the proof of Proposition 5.5, we have to show that, in a particular simplicial
object, the comparison morphisms c : Cn → KnC to the simplicial kernels are in E . This can be
done by showing that, for any b : B → KnC, there exists an extension p : Y → B and a morphism
y : Y → An such that b◦p = c◦y. This means using generalised elements and enlargement of domain
as for example in [3]. However, to make the proof easier to read, we just write it down as if we
were using actual elements and suppress the enlargement of domain. Similarly, we will use element
notation to mean generalised elements in the following definition.

Definition 5.4 (Cocylinder object). Let (A, E) satisfy (E1)–(E3). Let A be an E-semi-simplicial
object in A. Put AI

0 = A1 and, for n > 0, let AI
n be the limit of the zigzag

An+1

∂0

z���
��

��
�

∂1 �$?
??

??
??

An+1

∂1z���
��

��
�

∂2 �$?
??

??
??

· · ·
z� �$

An+1

∂nz���
��

��
�

∂n+1

�$?
??

??
??

An An An An An

in A. The faces ∂Ii : AI
n → AI

n−1 defined by

∂Ii (a0, . . . , an) = (∂i+1a0, . . . , ∂i+1ai−1, ∂iai+1, . . . , ∂ian)

for n ≥ 1 determine an E-semi-simplicial object AI .
Furthermore, ε0, ε1 : AI → A denote the semi-simplicial morphisms defined by

(ε0)n(a0, . . . , an) = ∂0a0, (ε1)n(a0, . . . , an) = ∂n+1an

for all n ≥ 0. Note that degreewise they are extensions.
When A is an E-quasi-simplicial object, the projections ε0 and ε1 admit a common splitting

s : A→ AI (in the category of E-semi-simplicial objects) defined by sn = 〈σ0, . . . , σn〉 : An → AI
n

for all n ≥ 0.
When A is an augmented E-quasi-simplicial object, we also put AI

−1 = A−1 and (ε0)−1 =
(ε1)−1 = s−1 = 1A−1 .

It is clear that two semi-simplicial morphisms f , g : A→ B are homotopic if and only if the
morphism 〈f, g〉 : A→ B× B factors over 〈ε0, ε1〉 : BI → B× B. (If A and B are augmented, under
both conditions f and g coincide at level −1.)

Proposition 5.5. Suppose that (A, E) is a relative homological category. Let A be an augmented
E-quasi-simplicial object in A. Then the kernel of ε0 : AI → A is an E-resolution.

Proof. Notice that K[(ε0)−1] = 0, and K[(ε0)0] → 0 is in E as the kernel of the double extension
(∂0, 1A−1) : ∂0∂0 → ∂0. This means that K[ε0] is an E-resolution at level 0.

Now let n ≥ 1. As (A, E) is relatively homological, the E-quasi-simplicial object A is E-Kan by
Theorem 5.2. As remarked above, we write the proof using elements instead of generalised elements.
Any (n+ 1)-tuple (a0, . . . , an) ∈ K[(ε0)n] ⊆ AI

n determines an element of KnK[ε0] ⊆ KnAI which
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may be expressed in a matrix as follows.

∂0a1 ∂0a2 ∂0a3 . . . ∂0an
∂2a0 ∂1a2 ∂1a3 . . . ∂1an
∂3a0 ∂3a1 ∂2a3 . . . ∂2an

...
...

...
. . .

...
∂n+1a0 ∂n+1a1 ∂n+1a2 . . . ∂n+1an−1

The rows of this matrix are elements of K[(ε0)n−1] ⊆ AI
n−1. Given an arbitrary element of KnK[ε0],

i.e., a matrix

b0,1 b0,2 b0,3 . . . b0,n
b2,0 b1,2 b1,3 . . . b1,n
b3,0 b3,1 b2,3 . . . b2,n

...
...

...
. . .

...
bn+1,0 bn+1,1 bn+1,2 . . . bn+1,n−1

satisfying certain properties, we must find an (n+ 1)-tuple (a0, . . . , an) in K[(ε0)n] ⊆ AI
n such that

the two matrices above are equal. We construct this required (n+ 1)-tuple by induction using the
Kan property.

We start by constructing a0. Note that such an element of K[(ε0)n] necessarily satisfies ∂0a0 = 0
and ∂ia0 = bi,0 for all 2 ≤ i ≤ n+ 1. These conditions determine an (n+ 1, 1)-horn in A, which by
the Kan property gives rise to the needed element a0.

Now suppose that, for some 0 ≤ k−1 ≤ n−1, the elements a0, . . . , ak−1 have been constructed.
Then the next element ak may be constructed as follows. It must satisfy ∂iak = bi,k for all 0 ≤ i ≤ n
such that i 6= k, k + 1 as well as the equality ∂kak = ∂kak−1 given by the induction hypothesis.
These equations determine an (n + 1, k + 1)-horn in A, which by the Kan property induces the
needed element ak. �

Notice that, when A is not augmented, we can still say that K[ε0] is E-exact for n ≥ 2, but the
simplicial kernel K1K[ε0] does not make sense for a non-augmented (quasi)-simplicial object.

Corollary 5.6. Let B be an E-quasi-simplicial object in a relative semi-abelian category (A, E). If
f and g : A→ B are homotopic E-semi-simplicial morphisms, then for any n ≥ 0 the maps Hnf
and Hng : HnA→ HnB are equal.

Proof. It suffices to show that Hnε0 = Hnε1 : HnBI → HnB. For n = 0 this is clear. This implies
that we can augment A and B by H0A and H0B respectively, giving H0f = H0g as augmentation
for f and g. For n ≥ 1 we can now use Proposition 5.5 together with Theorem 4.11: indeed, being
an E-resolution, the homology of K[ε0] is trivial for n ≥ 1; via the long exact homology sequence
(Theorem 4.12) and the fact that ε0 is a split epimorphism of E-semi-simplicial objects, this implies
that all Hnε0 are isomorphisms. Since both Hnε0 and Hnε1 are split by the same morphism Hns,
they are equal. �

Homology of objects. The homology of an object A of A depends on a functor I : A → B. For
this to make sense, we need very few conditions on the pair (A, E), but we need the pair (B,F),
where the homology is actually calculated, to be relatively semi-abelian. Thus we now assume
that (A, E) satisfies (E1)–(E3), and that I is a functor to a relative semi-abelian category (B,F)
sending E into F .

Definition 5.7. Let (A, E) satisfy (E1)–(E3). A projective E-resolution of an object A of A
is a quasi-simplicial E-resolution A of A where for all n ≥ 0 the objects An are projective with
respect to the class E .

Notice that an E-resolution, and thus a projective E-resolution, is automatically an E-semi-
simplicial object.
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Remark 5.8 (Tierney-Vogel construction of projective resolutions). If (A, E) is a pair such that A
has enough E-projectives, we can construct a projective E-resolution as follows [17]. First we choose
an E-projective object P0 and a morphism ∂0 : P0 → A in E , which we may call a (projective)
cover of A. Then the simplicial kernel K1 of ∂0 (the kernel pair) can be covered by another
E-projective object P1, resulting in the composites ∂0 and ∂1 : P1 → P0. Thus we successively take
the simplicial kernel and cover it by an E-projective object to obtain the quasi-simplicial object P

· · ·
,2 ,2,2,2

�%B
BB

BB
BB

B P2
,2,2,2

�%A
AA

AA
AA

A P1
,2,2

�%A
AA

AA
AA

A P0
,2 A−1

K3

9D}}}}}}}}

9D}}}}}}}}

9D}}}}}}}}

9D}}}}}}}}
K2

9D}}}}}}}}

9D}}}}}}}}

9D}}}}}}}}
K1

9D}}}}}}}}

9D}}}}}}}}

The degeneracies are induced inductively by the limit properties of the simplicial kernels and lift
to the Pn as these are projective. This augmented quasi-simplicial object is an E-resolution by
construction.

This proves that, when A has enough E-projectives, projective E-resolutions of an object always
exist, but of course they are not unique. However, as we shall now show, two such resolutions give
rise to the same homology of an object A. For this we use the Comparison Theorem from [17],
which we state here using our own terminology.

Theorem 5.9 ([17, Theorem 2.4]). Let (A, E) satisfy (E1)–(E3). Given two objects A and B in
A, let A be a semi-simplicial object over A with all An, for n ≥ 0, being E-projectives, and let
B be an E-resolution of B. Then any morphism f : A→ B can be extended to a semi-simplicial
morphism f : A→ B, and any two such extensions are simplicially homotopic. �

As simplicial homotopies are preserved by any functor, this immediately gives the following

Theorem 5.10. Let (A, E) satisfy (E1)–(E3) and let I : A → B be a functor to a relative semi-
abelian category (B,F) sending E into F . Given two projective E-resolutions A and B of an object
A in A, the objects HnIA and HnIB are isomorphic for any n ≥ 0.

Proof. Using the Comparison Theorem 5.9 on the identity 1A : A→ A, we see that the resolutions
A and B are homotopy equivalent. As the functor I preserves this homotopy equivalence, the
F-quasi-simplicial objects IA and IB are also homotopy equivalent and thus Corollary 5.6, used
in the relative semi-abelian category (B,F), implies that HnIA ∼= HnIB for all n ≥ 0. �

Remark 5.11. The classes E and F play slightly different roles in this result: E in A provides a
projective class which allows us to form projective resolutions, and so does not need to satisfy many
axioms. F in B makes (B,F) relative semi-abelian and so makes sure the homology is well-defined.
To be able to use the theory developed in this paper, we need the (quasi)-simplicial objects to
be F-(quasi)-simplicial, so for this reason I does have to preserve extensions even though they
play such different roles. Notice that even if I did not preserve extensions, it would still preserve
homotopies.

We can now define homology with coefficients in I.

Definition 5.12 (Homology of an object). Let (A, E) satisfy (E1)–(E3) and let I : A → B be a
functor into a relative semi-abelian category (B,F) sending E into F . Given an object A in A, let
A be a projective E-resolution of A. For any n ≥ 0, the (n + 1)st homology object of A with
coefficients in I is the object

Hn+1(A, I) = HnIA.

When A has enough E-projectives, this defines a functor

Hn+1(−, I) : A → B.
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The dimension shift stems from the classical numbering of homology of groups and similar
algebraic objects.

Apart from enabling this definition in a relative context, our proofs of the results leading up to
this definition are also a good way to view the corresponding absolute results. We have endeavoured
to present them as clearly as possible, also giving explicit explanations for results which so far have
been always used but never completely and explicitly written down.

Acknowledgements. I would like to thank Tomas Everaert and Tim Van der Linden for their
invaluable help with this paper, which is a direct by-product of our collaboration on [6].
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