Remainders of Security: from Modular Arithmetic to Cryptography

Dr Julia Goedecke

Newnham College

6 July 2017, Open Day

- If it is 3 o'clock now, what time is it in 10 hours?
- If it is Thursday now, what day is it in 9 days?
- If it is summer now, what season will it be in 100 seasons?
- If it is midday now, will it be light or dark in 539 hours?

- If it is 3 o'clock now, what time is it in 10 hours?
- If it is Thursday now, what day is it in 9 days?
- If it is summer now, what season will it be in 100 seasons?
- If it is midday now, will it be light or dark in 539 hours?

- If it is 3 o'clock now, what time is it in 10 hours?
- If it is Thursday now, what day is it in 9 days?
- If it is summer now, what season will it be in 100 seasons?
- If it is midday now, will it be light or dark in 539 hours?

- If it is 3 o'clock now, what time is it in 10 hours?
- If it is Thursday now, what day is it in 9 days?
- If it is summer now, what season will it be in 100 seasons?
- If it is midday now, will it be light or dark in 539 hours?

Remainders Multiplication

Calculating with remainders

Writing the above answers mathematically							
• $3+10 \equiv 1 \pmod{12}$	So 1 o'clock.						
• $4+9 \equiv 6 \pmod{7}$	So Saturday.						
$\bullet \ 2+100 \equiv 2 \pmod{4}$	So summer again.						
• $12 + 539 \equiv 12 + 480 + 59 \equiv 12 + 11 \equiv 23 \pmod{24}$ So it will be 23h, or 11pm, so dark.							

Modular Arithmetic

Formally

For whole numbers *x*, *y* and *n* we write

 $x \equiv y \pmod{n} \iff (x-y) = kn$ for some whole number k.

Two numbers are congruent modulo n exactly when their difference is divisible by n.

Modular Arithmetic

Formally

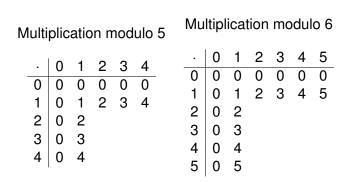
For whole numbers *x*, *y* and *n* we write

 $x \equiv y \pmod{n} \iff (x-y) = kn$ for some whole number k.

Two numbers are congruent modulo n exactly when their difference is divisible by n.

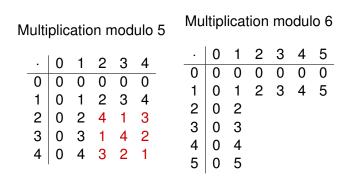
Remainders Multiplication

Multiplication mod n



Remainders Multiplication

Multiplication mod n



Remainders Multiplication

Multiplication mod n

Multiplication modulo 5						Mu	ltipl	icat	ion	mc	dul	o 6	
		0	1	2	3	4	•	0	1	2		4	5
	Δ	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	<u> </u>	0	•	<u> </u>	1	0	1	2	3	4	5
	1	0	1	2	3	4	2		2	_	•	•	•
	2	0	2	4	1	3	2	0	2				
		-					3	0	3				
	3	0	3	1 3	4	2	1		1				
	4	0	4	З	2	1	4	0	4				
	-	0		0	~		5	0	5				

Remainders Multiplication

Multiplication mod n

Multiplication modulo 5

	0 0 0 0 0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

	0 0 0 0 0 0 0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2				
3	0	3				
4	0	4				
5	0	5				

Remainders Multiplication

Multiplication mod n

Multiplication modulo 5

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0 0 0 0 0	4	3	2	1

•	0 0 0 0 0 0 0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0	1	2	3	4	5	
2	0	2	4	0	2	4	
3	0	3	0	3	0	3	
4	0	4	2	0	4	2	
5	0	5	4	3	2	1	

Remainders Multiplication

Multiplication mod n

Multiplication modulo 5

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0 0 0 0 0	4	3	2	1

•	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0 0 0 0 0	5	4	3	2	1

Remainders Multiplication

Multiplication mod n

Multiplication modulo 5

	0 0 0 0 0 0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	2 4 0 2 4	3	2	1

Remainders Multiplication

Multiplication mod n

Multiplication modulo 5

	0 0 0 0 0 0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

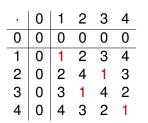
	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0 0 0 0 0	5	4	3	2	1

Remainders Multiplication

Multiplication mod n

Multiplication modulo 5

Multiplication modulo 6



•	0	1	2	3	4	5	
0	0	0	0	0	0	0	
1	0 0 0 0 0	1	2	3	4	5	
2	0	2	4	0	2	4	
3	0	3	0	3	0	3	
4	0	4	2	0	4	2	
5	0	5	4	3	2	1	

Inverse

We say y is an inverse of x mod n if $xy \equiv 1 \pmod{n}$.

Remainders Multiplication

Inverses for primes

Lemma

If p is prime, then every non-zero number mod p has an inverse mod p.

Remainders Multiplication

Inverses for primes

Lemma

If p is prime, then every non-zero number mod p has an inverse mod p.

Airlifted in: Bezout's Identity

If *a*, *b* coprime integers, then there are integers *x*, *y* such that ax + by = 1.

Remainders Multiplication

Inverses for primes

Lemma

If p is prime, then every non-zero number mod p has an inverse mod p.

Airlifted in: Bezout's Identity

If *a*, *b* coprime integers, then there are integers *x*, *y* such that ax + by = 1.

Proof

p prime, $a \not\equiv 0 \pmod{p} \Rightarrow p, a$ coprime.

Remainders Multiplication

Inverses for primes

Lemma

If p is prime, then every non-zero number mod p has an inverse mod p.

Airlifted in: Bezout's Identity

If *a*, *b* coprime integers, then there are integers *x*, *y* such that ax + by = 1.

Proof

p prime, $a \neq 0 \pmod{p} \Rightarrow p$, *a* coprime. So by Bezout, we have px + ay = 1 for some *x*, *y*.

Remainders Multiplication

Inverses for primes

Lemma

If p is prime, then every non-zero number mod p has an inverse mod p.

Airlifted in: Bezout's Identity

If *a*, *b* coprime integers, then there are integers *x*, *y* such that ax + by = 1.

Proof

p prime, $a \neq 0 \pmod{p} \Rightarrow p$, *a* coprime. So by Bezout, we have px + ay = 1 for some *x*, *y*. $\Rightarrow ay \equiv 1 \pmod{p}$.

Remainders Multiplication

Inverses for primes

Lemma

If p is prime, then every non-zero number mod p has an inverse mod p.

Airlifted in: Bezout's Identity

If *a*, *b* coprime integers, then there are integers *x*, *y* such that ax + by = 1.

Proof

p prime, $a \neq 0 \pmod{p} \Rightarrow p$, *a* coprime. So by Bezout, we have px + ay = 1 for some *x*, *y*. $\Rightarrow ay \equiv 1 \pmod{p}$.

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

• Is it possible that any of these is 0 (mod *n*)?

Calculations and thoughts

Dr Julia Goedecke (Newnham)

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

• Is it possible that any of these is 0 (mod *n*)?

Calculations and thoughts

a contains not a single factor of n.

Dr Julia Goedecke (Newnham)

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

• Is it possible that any of these is 0 (mod *n*)?

Calculations and thoughts

a contains not a single factor of *n*. All the numbers $1, \ldots, (n-1)$ are less than *n*.

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

• Is it possible that any of these is 0 (mod *n*)?

Calculations and thoughts

a contains not a single factor of n.

All the numbers $1, \ldots, (n-1)$ are less than *n*.

So *n* can't be formed as a factor of any of those numbers!

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

• Is it possible that any of these is 0 (mod *n*)? No! They are all non-zero mod *n*.

Calculations and thoughts

a contains not a single factor of n.

All the numbers $1, \ldots, (n-1)$ are less than *n*.

So *n* can't be formed as a factor of any of those numbers!

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

- Is it possible that any of these is 0 (mod n)? No! They are all non-zero mod n.
- Can any two be the same mod n?

Calculations and thoughts

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

- Is it possible that any of these is 0 (mod n)? No! They are all non-zero mod n.
- Can any two be the same mod n?

Calculations and thoughts

Suppose $ka \equiv la \pmod{n}$, with l < k.

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

- Is it possible that any of these is 0 (mod *n*)? No! They are all non-zero mod *n*.
- Can any two be the same mod n?

Calculations and thoughts

Suppose $ka \equiv la \pmod{n}$, with l < k. That means ka - la = (k - l)a is a multiple of *n*.

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

- Is it possible that any of these is 0 (mod *n*)? No! They are all non-zero mod *n*.
- Can any two be the same mod n?

Calculations and thoughts

Suppose $ka \equiv la \pmod{n}$, with l < k.

That means ka - la = (k - l)a is a multiple of *n*.

But we have explained that this can't happen if k - l < n which it is.

Dr Julia Goedecke (Newnham)

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

- Is it possible that any of these is 0 (mod *n*)? No! They are all non-zero mod *n*.
- Can any two be the same mod *n*? No! They must all be different.

Calculations and thoughts

Suppose $ka \equiv la \pmod{n}$, with l < k.

That means ka - la = (k - l)a is a multiple of *n*.

But we have explained that this can't happen if k - l < n which it is.

Dr Julia Goedecke (Newnham)

Multiplication

A little exercise

For *n* and *a* coprime, consider the numbers $a, 2a, 3a, \ldots, (n-1)a \mod n$.

- Is it possible that any of these is 0 (mod n)? No! They are all non-zero mod n.
- Can any two be the same mod n? No! They must all be different.
- Which numbers mod n can they be?

Calculations and thoughts

A little exercise

For *n* and *a* coprime, consider the numbers *a*,2*a*,3*a*,...,(*n*−1)*a* mod *n*.

- Is it possible that any of these is 0 (mod n)? No! They are all non-zero mod n.
- Can any two be the same mod n? No! They must all be different.
- Which numbers mod n can they be? Since all different, they are $1, 2, \ldots, (n-1)$ in some order.

Calculations and thoughts

Remainders Multiplication

Fermat's Little Theorem

Theorem (Little Fermat)

If p prime and a not a multiple of p, then

 $a^{p-1} \equiv 1 \pmod{p}$

Proof

● Consider product of a, 2a, 3a, ..., (p − 1)a in two ways:

Remainders Multiplication

Fermat's Little Theorem

Theorem (Little Fermat)

If p prime and a not a multiple of p, then

 $a^{p-1} \equiv 1 \pmod{p}$

- Consider product of a, 2a, 3a, ..., (p − 1)a in two ways:
- Same numbers as $1, 2, \ldots, (p-1)$, so have same product.

Remainders Multiplication

Fermat's Little Theorem

Theorem (Little Fermat)

If p prime and a not a multiple of p, then

 $a^{p-1} \equiv 1 \pmod{p}$

- Consider product of a, 2a, 3a, ..., (p − 1)a in two ways:
- Same numbers as $1, 2, \ldots, (p-1)$, so have same product.
- Or take all factors of a to the front.

Remainders Multiplication

Fermat's Little Theorem

Theorem (Little Fermat)

If p prime and a not a multiple of p, then

 $a^{p-1} \equiv 1 \pmod{p}$

- Consider product of a, 2a, 3a, ..., (p − 1)a in two ways:
- Same numbers as $1, 2, \ldots, (p-1)$, so have same product.
- Or take all factors of a to the front.
- So $1 \cdot 2 \cdots (p-1) \equiv a^{p-1} \cdot 1 \cdot 2 \cdots (p-1) \pmod{p}$.

Remainders Multiplication

Fermat's Little Theorem

Theorem (Little Fermat)

If p prime and a not a multiple of p, then

 $a^{p-1} \equiv 1 \pmod{p}$

- Consider product of a, 2a, 3a, ..., (p − 1)a in two ways:
- Same numbers as $1, 2, \ldots, (p-1)$, so have same product.
- Or take all factors of a to the front.
- So $1 \cdot 2 \cdots (p-1) \equiv a^{p-1} \cdot 1 \cdot 2 \cdots (p-1) \pmod{p}$.
- But each of $1, 2, \ldots, p-1$ has an inverse mod p!

Remainders Multiplication

Fermat's Little Theorem

Theorem (Little Fermat)

If p prime and a not a multiple of p, then

 $a^{p-1} \equiv 1 \pmod{p}$

- Consider product of a, 2a, 3a, ..., (p − 1)a in two ways:
- Same numbers as $1, 2, \ldots, (p-1)$, so have same product.
- Or take all factors of a to the front.
- So $1 \cdot 2 \cdots (p-1) \equiv a^{p-1} \cdot 1 \cdot 2 \cdots (p-1) \pmod{p}$.
- But each of $1, 2, \ldots, p-1$ has an inverse mod p!
- Multiply both sides by all these inverses, to get:

Remainders Multiplication

Fermat's Little Theorem

Theorem (Little Fermat)

If p prime and a not a multiple of p, then

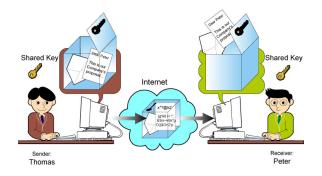
 $a^{p-1} \equiv 1 \pmod{p}$

- Consider product of a, 2a, 3a, ..., (p − 1)a in two ways:
- Same numbers as $1, 2, \ldots, (p-1)$, so have same product.
- Or take all factors of a to the front.
- So $1 \cdot 2 \cdots (p-1) \equiv a^{p-1} \cdot 1 \cdot 2 \cdots (p-1) \pmod{p}$.
- But each of $1, 2, \ldots, p-1$ has an inverse mod p!
- Multiply both sides by all these inverses, to get:
- $1 \equiv a^{p-1} \pmod{p}$.

Modular Arithmetic Sym Cryptography Publ

Symmetric Key Cryptography Public Key Cryptography

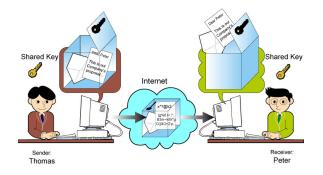
Cryptography



Modular Arithmetic Symme Cryptography Public K

Symmetric Key Cryptography Public Key Cryptography

Cryptography



- write secret messages
- store data securely
- secure internet payment
- secret radio transmission in war
- ...

Caesar Cipher

How does it work?

- Our friend moves to Australia, we want to send them a secret letter.
- We can use different "shifts": our key.
- We write secret sentence using key.
- How will recipient know key?

Link to modular arithmetic

What's it got to do with what we did before?

 Substitute numbers for the letters: A = 1, B = 2, C = 3 etc. up to Z = 26

Link to modular arithmetic

What's it got to do with what we did before?

- Substitute numbers for the letters: A = 1, B = 2, C = 3 etc. up to Z = 26
- Pick a number as your key: we'll call it φ.

Link to modular arithmetic

What's it got to do with what we did before?

- Substitute numbers for the letters: A = 1, B = 2, C = 3 etc. up to Z = 26
- Pick a number as your key: we'll call it φ.
- For each letter (now a number α) of your message, calculate

 $\beta \equiv \alpha + \varphi \pmod{26}$

Link to modular arithmetic

What's it got to do with what we did before?

- Substitute numbers for the letters: A = 1, B = 2, C = 3 etc. up to Z = 26
- Pick a number as your key: we'll call it φ.
- For each letter (now a number α) of your message, calculate

 $\beta \equiv \alpha + \varphi \pmod{26}$

Transmit β (a string of such βs, one each for each letter of your message).

Link to modular arithmetic

What's it got to do with what we did before?

- Substitute numbers for the letters: A = 1, B = 2, C = 3 etc. up to Z = 26
- Pick a number as your key: we'll call it φ.
- For each letter (now a number α) of your message, calculate

 $\beta \equiv \alpha + \varphi \pmod{26}$

- Transmit β (a string of such βs, one each for each letter of your message).
- To decipher, recipient needs to calculate

 $\beta - \varphi \pmod{26}$

to get your original message α back.

Symmetric Key Cryptography Public Key Cryptography

Symmetric Key Cryptography

Problems

- Alice and Bob want secret communication.
- Both need same key.
- Problem: safe key exchange.
- Doesn't work for internet shopping.

Symmetric Key Cryptography Public Key Cryptography

Public Key Cryptography

Padlock metaphor

- Bob has padlock and matching key.
- Alice can get open padlock from internet.
- Alice padlocks the message for Bob.
- Message now safe to send.
- Only Bob has the key to open it.

RSA Algorithm

How it works

• Take two large primes *p* and *q*.

- Take two large primes *p* and *q*.
- Calculate n = pq and $\varphi = (p-1)(q-1)$.

- Take two large primes *p* and *q*.
- Calculate n = pq and $\varphi = (p-1)(q-1)$.
- Choose public key e ≤ φ which has no factors in common with φ.

- Take two large primes *p* and *q*.
- Calculate n = pq and $\varphi = (p-1)(q-1)$.
- Choose public key e ≤ φ which has no factors in common with φ.
- Calculate private key d which satisfies $de \equiv 1 \pmod{\varphi}$.

- Take two large primes *p* and *q*.
- Calculate n = pq and $\varphi = (p-1)(q-1)$.
- Choose public key e ≤ φ which has no factors in common with φ.
- Calculate private key d which satisfies $de \equiv 1 \pmod{\varphi}$.
- Throw away p, q and φ .

- Take two large primes *p* and *q*.
- Calculate n = pq and $\varphi = (p-1)(q-1)$.
- Choose public key e ≤ φ which has no factors in common with φ.
- Calculate private key d which satisfies $de \equiv 1 \pmod{\varphi}$.
- Throw away p, q and φ .
- Encrypt message x as $y \equiv x^e \pmod{n}$.

- Take two large primes *p* and *q*.
- Calculate n = pq and $\varphi = (p-1)(q-1)$.
- Choose public key e ≤ φ which has no factors in common with φ.
- Calculate private key d which satisfies $de \equiv 1 \pmod{\varphi}$.
- Throw away p, q and φ .
- Encrypt message x as $y \equiv x^e \pmod{n}$.
- Decrypt ciphertext y as $x \equiv y^d \pmod{n}$.

RSA Algorithm

Does it really work?

Can we get the correct message back? Is $(x^e)^d \equiv x \pmod{n}$?

Proof

Dr Julia Goedecke (Newnham)

Does it really work?

Can we get the correct message back? Is $(x^e)^d \equiv x \pmod{n}$?

Airlifted in

Enough to show $(x^e)^d \equiv x \pmod{p}$ and $(x^e)^d \equiv x \pmod{q}$.

RSA Algorithm

Does it really work?

Can we get the correct message back? Is $(x^e)^d \equiv x \pmod{n}$?

Airlifted in

Enough to show $(x^e)^d \equiv x \pmod{p}$ and $(x^e)^d \equiv x \pmod{q}$.

$$x^{ed} = x^{k\varphi+1}$$

RSA Algorithm

Does it really work?

Can we get the correct message back? Is $(x^e)^d \equiv x \pmod{n}$?

Airlifted in

Enough to show $(x^e)^d \equiv x \pmod{p}$ and $(x^e)^d \equiv x \pmod{q}$.

$$x^{ed} = x^{k\varphi+1} = x \cdot x^{k(p-1)(q-1)}$$

RSA Algorithm

Does it really work?

Can we get the correct message back? Is $(x^e)^d \equiv x \pmod{n}$?

Airlifted in

Enough to show $(x^e)^d \equiv x \pmod{p}$ and $(x^e)^d \equiv x \pmod{q}$.

$$x^{ed} = x^{k\varphi+1} = x \cdot x^{k(p-1)(q-1)} = x \cdot (x^{(p-1)})^{k(q-1)}$$

RSA Algorithm

Does it really work?

Can we get the correct message back? Is $(x^e)^d \equiv x \pmod{n}$?

Airlifted in

Enough to show $(x^e)^d \equiv x \pmod{p}$ and $(x^e)^d \equiv x \pmod{q}$.

Proof

$$x^{ed} = x^{k\varphi+1} = x \cdot x^{k(p-1)(q-1)} = x \cdot (x^{(p-1)})^{k(q-1)}.$$

But Little Fermat $\Rightarrow x^{(p-1)} \equiv 1 \pmod{p}$ as long as $x \neq 0 \pmod{p}$.

Does it really work?

Can we get the correct message back? Is $(x^e)^d \equiv x \pmod{n}$?

Airlifted in

Enough to show $(x^e)^d \equiv x \pmod{p}$ and $(x^e)^d \equiv x \pmod{q}$.

Proof

$$x^{ed} = x^{k\varphi+1} = x \cdot x^{k(p-1)(q-1)} = x \cdot (x^{(p-1)})^{k(q-1)}.$$

But Little Fermat $\Rightarrow x^{(p-1)} \equiv 1 \pmod{p}$ as long as $x \not\equiv 0 \pmod{p}$. So $x^{ed} = x \cdot (x^{(p-1)})^{k(q-1)}$

Does it really work?

Can we get the correct message back? Is $(x^e)^d \equiv x \pmod{n}$?

Airlifted in

Enough to show $(x^e)^d \equiv x \pmod{p}$ and $(x^e)^d \equiv x \pmod{q}$.

Proof

$$x^{ed} = x^{k\varphi+1} = x \cdot x^{k(p-1)(q-1)} = x \cdot (x^{(p-1)})^{k(q-1)}.$$

But Little Fermat $\Rightarrow x^{(p-1)} \equiv 1 \pmod{p}$ as long as $x \neq 0 \pmod{p}$. So $x^{ed} = x \cdot (x^{(p-1)})^{k(q-1)} \equiv x \cdot 1^{k(q-1)} = x \pmod{p}$.

Does it really work?

Can we get the correct message back? Is $(x^e)^d \equiv x \pmod{n}$?

Airlifted in

Enough to show $(x^e)^d \equiv x \pmod{p}$ and $(x^e)^d \equiv x \pmod{q}$.

Proof

$$x^{ed} = x^{k\varphi+1} = x \cdot x^{k(p-1)(q-1)} = x \cdot (x^{(p-1)})^{k(q-1)}.$$

But Little Fermat $\Rightarrow x^{(p-1)} \equiv 1 \pmod{p}$ as long as $x \neq 0 \pmod{p}$. So $x^{ed} = x \cdot (x^{(p-1)})^{k(q-1)} \equiv x \cdot 1^{k(q-1)} = x \pmod{p}$. Hurray!

Dr Julia Goedecke (Newnham)

RSA: Why is it safe?

Multiplying vs. Factorising

Calculate 23 · 37.

RSA: Why is it safe?

Multiplying vs. Factorising

- Calculate 23 · 37.
- Find the factors of 943.

RSA: Why is it safe?

Multiplying vs. Factorising

- Calculate 23 · 37.
- Find the factors of 943.
- Which was faster/easier?

RSA: Why is it safe?

Multiplying vs. Factorising

- Calculate 23 · 37.
- Find the factors of 943.
- Which was faster/easier?
- To decipher, need to know *d*, for which we need φ, for which we need *p* and *q*: hard to get.

I hope you had some fun!



Dr Julia Goedecke (Newnham)