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Theorem. In an abelian category A, a diagram

with exact rows induces a siz-term exact sequence

Kera ——> Kerb ——> Kerc RN Coker ¢ —> Coker b —> Coker ¢
between the kernels and cokernels.

Proof. Consider the kernels and cokernels with the induced maps between them. For shortness of
notation we will write Kera = K1, Kerb = K9 and Ker ¢ = K3, similarly we will call the cokernels Q);.
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We give a proof which maximises the use of the Duality Principle (borrowed from Peter Johnstone).

1. Construction of 4 Form the diagram
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where the upper square is a pullback, the lower square is a pushout, e = kerp and d = cokert.
Remember that pullbacks and pushout preserve both monos and epis (as we are in an abelian category),
so p and 7 are epis and ¢q and ¢ are monos. So as any epi is the cokernel of its kernel, we have p = cokere



and dually ¢t = kerd. To construct §: K3 — (', it is enough to factor the composite rbg through p
and through ¢. For this we just have to show that rbge = 0 and that drbq = 0, which are dual to each
other, so showing the first is enough.

To prove the first, note that gge = kspe = 0, so ge factors through ker ¢ = im f. So if we form the
pullback
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then its top edge [ is epic. This is because it is the same as the pullback:

But rbgel = rbfm = rf'am = tqgam = 0 (as ¢y is the cokernel of a),
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so we may deduce rbge = 0 as required. So we get §: K3 —> Q1 such that tdp = rbq.

Exactness at Ko We have k3gf = gkaf = gfk1 = 0 and k3 is monic, so gf = 0. Let ¢/: B/ — Ko
be the kernel of g; then the composite koe’ factors through ker g = im f, so as before we get an epi
I': '’ — E’ and a morphism m/: L' — A such that fm’ = kqe'l'. Now f'am’ = bfm’ = bkee'l! =0
and f’ is monic, so am/ = 0, i.e. m/ factors through kera = ki, say by s: L' — Ki. Now kaofs =
fkis = fm' = koe'l' and ko is monic, so fs = €/l', i.e. s is a morphism €'’ — f in A/K5. But this
implies that im f > ime'l’ = ¢/ = kerg in Sub(K3) (by naturality of image factorisation).
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The reverse inequality follows from gf = 0, so we get exactness at Ko.



Exactness at K3 The pair (k2,g) factors through the pullback P, say by u: Ko — P. So to prove
that dg = 0, it suffices (since ¢ is monic) to prove that tdpu = 0, i.e. that rbgu = 0 (since § was induced
by tdp = rbq). But this composite equals rbke, which is of course 0.

Now let h: K3 — H be the cokernel of g, and form the pushout (the right-hand square)
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where m is monic as ks is. Then ogks = oksg = mhg = 0, so og factors through coker ko = coimb. So
(as before with [) if we form another pushout (the right-hand square)
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then m’ is monic. Then o' f'a = o'bf = m'ogf = 0, so o' f’ factors through cokera = ¢, say by
n: Q1 —> N. Then the pair (¢o/,n) factors through the pushout T', say by : T — N.
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Then
ndp = xtdp = xrbq = o'bq = m'ogq = m'oksp = m'mhp

and as p is epic, we have nd = m’mh, i.e. n is a morphism § — m/mh in the coslice category K3\A,
so coim § > coimm’mh = h = coker g in the preorder of quotients of Kj.
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The reverse inequality follows from dg = 0. So we have exactness at K.

Exactness at ()1 and ()2 These proofs are dual to those at K3 and K5 respectively. O



