
Snake Lemma

Michaelmas 2011 Julia Goedecke

Theorem. In an abelian category A, a diagram
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with exact rows induces a six-term exact sequence
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between the kernels and cokernels.

Proof. Consider the kernels and cokernels with the induced maps between them. For shortness of
notation we will write Ker a = K1, Ker b = K2 and Ker c = K3, similarly we will call the cokernels Qi.
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We give a proof which maximises the use of the Duality Principle (borrowed from Peter Johnstone).

1. Construction of δ Form the diagram
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where the upper square is a pullback, the lower square is a pushout, e = ker p and d = coker t.
Remember that pullbacks and pushout preserve both monos and epis (as we are in an abelian category),
so p and r are epis and q and t are monos. So as any epi is the cokernel of its kernel, we have p = coker e



and dually t = ker d. To construct δ : K3 −→ C1, it is enough to factor the composite rbq through p
and through t. For this we just have to show that rbqe = 0 and that drbq = 0, which are dual to each
other, so showing the first is enough.
To prove the first, note that gqe = k3pe = 0, so qe factors through ker g = im f . So if we form the
pullback
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then its top edge l is epic. This is because it is the same as the pullback:
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But rbqel = rbfm = rf ′am = tq1am = 0 (as q1 is the cokernel of a),
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so we may deduce rbqe = 0 as required. So we get δ : K3 −→ Q1 such that tδp = rbq.

Exactness at K2 We have k3gf = gk2f = gfk1 = 0 and k3 is monic, so gf = 0. Let e′ : E′ −→ K2

be the kernel of g; then the composite k2e
′ factors through ker g = im f , so as before we get an epi

l′ : L′ −→ E′ and a morphism m′ : L′ −→ A such that fm′ = k2e
′l′. Now f ′am′ = bfm′ = bk2e

′l′ = 0
and f ′ is monic, so am′ = 0, i.e. m′ factors through ker a = k1, say by s : L′ −→ K1. Now k2fs =
fk1s = fm′ = k2e

′l′ and k2 is monic, so fs = e′l′, i.e. s is a morphism e′l′ −→ f in A/K2. But this
implies that im f ≥ im e′l′ = e′ = ker g in Sub(K2) (by naturality of image factorisation).
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The reverse inequality follows from gf = 0, so we get exactness at K2.
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Exactness at K3 The pair (k2, g) factors through the pullback P , say by u : K2 −→ P . So to prove
that δg = 0, it suffices (since t is monic) to prove that tδpu = 0, i.e. that rbqu = 0 (since δ was induced
by tδp = rbq). But this composite equals rbk2, which is of course 0.
Now let h : K3 −→ H be the cokernel of g, and form the pushout (the right-hand square)
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where m is monic as k3 is. Then ogk2 = ok3g = mhg = 0, so og factors through coker k2 = coim b. So
(as before with l) if we form another pushout (the right-hand square)
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then m′ is monic. Then o′f ′a = o′bf = m′ogf = 0, so o′f ′ factors through coker a = q1, say by
n : Q1 −→ N . Then the pair (o′, n) factors through the pushout T , say by x : T −→ N .
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Then
nδp = xtδp = xrbq = o′bq = m′ogq = m′ok3p = m′mhp

and as p is epic, we have nδ = m′mh, i.e. n is a morphism δ −→ m′mh in the coslice category K3\A,
so coim δ ≥ coimm′mh = h = coker g in the preorder of quotients of K3.
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The reverse inequality follows from δg = 0. So we have exactness at K3.

Exactness at Q1 and Q2 These proofs are dual to those at K3 and K2 respectively.
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