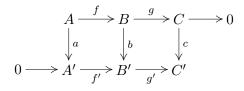
Snake Lemma

Michaelmas 2011

Julia Goedecke

Theorem. In an abelian category A, a diagram

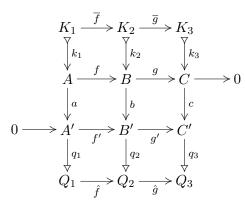


with exact rows induces a six-term exact sequence

$$\operatorname{Ker} a \longrightarrow \operatorname{Ker} b \longrightarrow \operatorname{Ker} c \xrightarrow{\delta} \operatorname{Coker} a \longrightarrow \operatorname{Coker} b \longrightarrow \operatorname{Coker} c$$

between the kernels and cokernels.

Proof. Consider the kernels and cokernels with the induced maps between them. For shortness of notation we will write Ker $a = K_1$, Ker $b = K_2$ and Ker $c = K_3$, similarly we will call the cokernels Q_i .



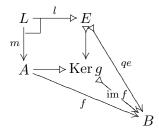
We give a proof which maximises the use of the Duality Principle (borrowed from Peter Johnstone).

1. Construction of δ Form the diagram

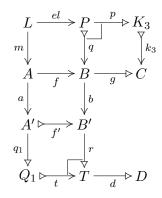
where the upper square is a pullback, the lower square is a pushout, $e = \ker p$ and $d = \operatorname{coker} t$. Remember that pullbacks and pushout preserve both monos and epis (as we are in an abelian category), so p and r are epis and q and t are monos. So as any epi is the cokernel of its kernel, we have $p = \operatorname{coker} e$ and dually $t = \ker d$. To construct $\delta: K_3 \longrightarrow C_1$, it is enough to factor the composite rbq through p and through t. For this we just have to show that rbqe = 0 and that drbq = 0, which are dual to each other, so showing the first is enough.

To prove the first, note that $gqe = k_3pe = 0$, so qe factors through ker g = im f. So if we form the pullback

then its top edge l is epic. This is because it is the same as the pullback:

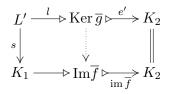


But $rbqel = rbfm = rf'am = tq_1am = 0$ (as q_1 is the cokernel of a),



so we may deduce rbqe = 0 as required. So we get $\delta: K_3 \longrightarrow Q_1$ such that $t\delta p = rbq$.

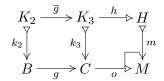
Exactness at K_2 We have $k_3\overline{g}\overline{f} = gk_2\overline{f} = gfk_1 = 0$ and k_3 is monic, so $\overline{g}\overline{f} = 0$. Let $e': E' \longrightarrow K_2$ be the kernel of \overline{g} ; then the composite k_2e' factors through ker $g = \operatorname{im} f$, so as before we get an epi $l': L' \longrightarrow E'$ and a morphism $m': L' \longrightarrow A$ such that $fm' = k_2e'l'$. Now $f'am' = bfm' = bk_2e'l' = 0$ and f' is monic, so am' = 0, i.e. m' factors through ker $a = k_1$, say by $s: L' \longrightarrow K_1$. Now $k_2\overline{f}s = fk_1s = fm' = k_2e'l'$ and k_2 is monic, so $\overline{f}s = e'l'$, i.e. s is a morphism $e'l' \longrightarrow \overline{f}$ in \mathcal{A}/K_2 . But this implies that $\operatorname{im} \overline{f} \ge \operatorname{im} e'l' = e' = \ker \overline{g}$ in $\operatorname{Sub}(K_2)$ (by naturality of image factorisation).



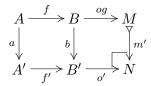
The reverse inequality follows from $\overline{g}\overline{f} = 0$, so we get exactness at K_2 .

Exactness at K_3 The pair (k_2, \overline{g}) factors through the pullback P, say by $u: K_2 \longrightarrow P$. So to prove that $\delta \overline{g} = 0$, it suffices (since t is monic) to prove that $t\delta pu = 0$, i.e. that rbqu = 0 (since δ was induced by $t\delta p = rbq$). But this composite equals rbk_2 , which is of course 0.

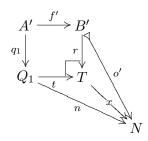
Now let $h: K_3 \longrightarrow H$ be the cokernel of \overline{g} , and form the pushout (the right-hand square)



where m is monic as k_3 is. Then $ogk_2 = ok_3\overline{g} = mh\overline{g} = 0$, so og factors through coker $k_2 = \operatorname{coim} b$. So (as before with l) if we form another pushout (the right-hand square)



then m' is monic. Then o'f'a = o'bf = m'ogf = 0, so o'f' factors through coker $a = q_1$, say by $n: Q_1 \longrightarrow N$. Then the pair (o', n) factors through the pushout T, say by $x: T \longrightarrow N$.



Then

$$n\delta p = xt\delta p = xrbq = o'bq = m'oqq = m'ok_3p = m'mhp$$

and as p is epic, we have $n\delta = m'mh$, i.e. n is a morphism $\delta \longrightarrow m'mh$ in the coslice category $K_3 \setminus A$, so $\operatorname{coim} \delta \ge \operatorname{coim} m'mh = h = \operatorname{coker} \overline{g}$ in the preorder of quotients of K_3 .

The reverse inequality follows from $\delta \overline{g} = 0$. So we have exactness at K_3 .

Exactness at Q_1 and Q_2 These proofs are dual to those at K_3 and K_2 respectively.