Special Adjoint Functor Theorem

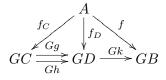
Michaelmas 2011

Theorem. Suppose both C and D are locally small, and that D is complete and well-powered and has a coseparating set. Then a functor $G: D \longrightarrow C$ has a left adjoint if and only if G preserves small limits.

Proof. " \Rightarrow ": G preserves all limits that exist in \mathcal{D} as it is a right adjoint.

"⇐": The "Limits in $(A \downarrow G)$ " Lemma implies that each $(A \downarrow G)$ is complete; it also inherits local smallness from \mathcal{D} . The Remark "Monos in Functor Categories" implies that the forgetful functor $(A \downarrow G) \longrightarrow \mathcal{D}$ preserves monos (as it creates and so preserves limits by "Limits in $(A \downarrow G)$ "), so the subobjects of (B, f) in $(A \downarrow G)$ are those subobjects $B' \rightarrow B$ in \mathcal{D} for which $f: A \longrightarrow GB$ factors through $GB' \rightarrow GB$. So $(A \downarrow G)$ inherits well-poweredness from \mathcal{D} .

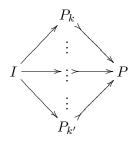
Given a coseparating set S for D, the set $S' = \{(B, f) | B \in S, f : A \longrightarrow GB\}$ (i.e. taking all possible such f) is a coseparating set for $(A \downarrow G)$: if we have $(C, f_C) \xrightarrow{g}{h} (D, f_D)$ with $g \neq h$ in $(A \downarrow G)$, there exists $B \in S$ and $k : D \longrightarrow B$ such that $kg \neq kh$. Taking $f = (Gk)f_D$, we have $(B, f) \in S'$ and $kg \neq kh$ in $(A \downarrow G)$.



Note that \mathcal{S}' really is a set, as \mathcal{C} is locally small.

So we have to show that if a category \mathcal{A} is complete, locally small, well-powered and has a cosparating set, then \mathcal{A} has an initial object I.

Let $\{B_j, j \in J\}$ be a coseparating set for \mathcal{A} . Form $P = \prod_{j \in J} B_j$ (possible as \mathcal{A} is complete), and a set $\{P_k \rightarrow P \mid k \in K\}$ of representatives of subobjects of P (possible as \mathcal{A} is well-powered). Form the limit of the diagram with edges all the $P_k \rightarrow P$ for $k \in K$ (possible as \mathcal{A} is complete).



The legs $I \longrightarrow P_k$ are also monos (proof similar to "Pullbacks preserve monos"). We have

$$(I \rightarrow P) \leq (P_k \rightarrow P)$$

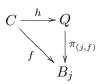
as subobjects, for all $k \in K$. So $I \rightarrow P$ is the smallest subobject of P. We want to show that I is initial in \mathcal{A} .

First we show that there can be at most one morphism $I \longrightarrow C$ for any $C \in \text{ob } \mathcal{A}$. Suppose we have $I \xrightarrow{f} C$. We can form the equaliser $E \xrightarrow{I} I \xrightarrow{f} C$. Then $E \xrightarrow{I} P$ is a subobject of P, but $I \xrightarrow{P} P$ is the smallest, so $E \longrightarrow I$ is an isomorphism, and so f = g.

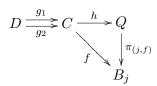
Julia Goedecke

Now we want to construct a morphism $I \longrightarrow C$.

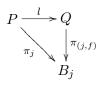
For $C \in \text{ob } \mathcal{A}$, form the set $T = \{(j, f) | j \in J, f : C \longrightarrow B_j\}$, and the product $Q = \prod_{(j,f)} B_j$. We have a canonical morphism $h: C \longrightarrow Q$, defined by composition with the projections:



for all $(j, f) \in T$. This *h* is monic: for $D \xrightarrow{g_1} C \xrightarrow{h} Q$ with $hg_1 = hg_2$, we have $fg_1 = fg_2$ for all $(j, f) \in T$.



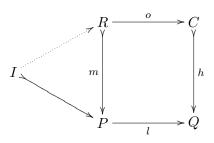
So as the B_j form a coseparating set, $g_1 = g_2$. We also have a morphism $l: P \longrightarrow Q$ defined by



Form a pullback

Here *m* is also monic, as pullbacks preserve monos, so *R* is a subobject of *P*. But $I \rightarrow P$ is the smallest, so there is a morphism $I \rightarrow R$,

 $\begin{array}{c} R \xrightarrow{o} C \\ m \\ \downarrow & \downarrow h \\ R \xrightarrow{o} C \\ \\ R \xrightarrow{$



which gives a morphism $I \longrightarrow R \longrightarrow C$ as desired.