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Examples of abstract structures
Why bother?
Category Theory

Numbers

The probably most important step of abstraction in the history
of mathematics:

“3 apples” −→ “3”
After that also (not necessarily in this order)

negative numbers (abstraction of debt?)
rational numbers (abstraction of proportions)
real numbers (abstraction of lengths)
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Examples of abstract structures
Why bother?
Category Theory

Examples of groups

Addition in Z Addition (mod n) Symmetries
a + b ∈ Z a + b ∈ Zn g◦h is a symmetry
there is 0 s.t.
a + 0 = a

there is 0 s.t.
a + 0 ≡ a (mod n)

there is e s.t.
g◦e = g = e◦g

there is −a s.t.
a + (−a) = 0

there is n − a s.t.
a + (n − a) ≡ 0

there is g−1 s.t.
g−1◦g = e

a + (b + c) =
(a + b) + c

a + (b + c) ≡
(a + b) + c

g◦(h◦k) = (g◦h)◦k

a + b = b + a a + b ≡ b + a g◦h 6= h◦g
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Examples of abstract structures
Why bother?
Category Theory

Groups

Definition
A group is a set G with an operation ∗ satisfying the axioms

g ∗ h ∈ G for g,h ∈ G (closure);
there exists e ∈ G such that g ∗ e = g = e ∗ g for g ∈ G
(identity);
for every g ∈ G there exists g−1 ∈ G such that
g ∗ g−1 = e = g−1 ∗ g (inverses);
g ∗ (h ∗ k) = (g ∗ h) ∗ k for all g,h, k ∈ G (associativity).

If also
g ∗ h = h ∗ g for all g,h ∈ G,

then the group is called commutative or abelian.

Julia Goedecke (Queens’) Abstraction in Mathematics 18/02/2013 10 / 44



Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Groups

Definition
A group is a set G with an operation ∗ satisfying the axioms

g ∗ h ∈ G for g,h ∈ G (closure);
there exists e ∈ G such that g ∗ e = g = e ∗ g for g ∈ G
(identity);
for every g ∈ G there exists g−1 ∈ G such that
g ∗ g−1 = e = g−1 ∗ g (inverses);
g ∗ (h ∗ k) = (g ∗ h) ∗ k for all g,h, k ∈ G (associativity).

If also
g ∗ h = h ∗ g for all g,h ∈ G,

then the group is called commutative or abelian.

Julia Goedecke (Queens’) Abstraction in Mathematics 18/02/2013 10 / 44



Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Groups

Definition
A group is a set G with an operation ∗ satisfying the axioms

g ∗ h ∈ G for g,h ∈ G (closure);
there exists e ∈ G such that g ∗ e = g = e ∗ g for g ∈ G
(identity);
for every g ∈ G there exists g−1 ∈ G such that
g ∗ g−1 = e = g−1 ∗ g (inverses);
g ∗ (h ∗ k) = (g ∗ h) ∗ k for all g,h, k ∈ G (associativity).

If also
g ∗ h = h ∗ g for all g,h ∈ G,

then the group is called commutative or abelian.

Julia Goedecke (Queens’) Abstraction in Mathematics 18/02/2013 10 / 44



Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Groups

Definition
A group is a set G with an operation ∗ satisfying the axioms

g ∗ h ∈ G for g,h ∈ G (closure);
there exists e ∈ G such that g ∗ e = g = e ∗ g for g ∈ G
(identity);
for every g ∈ G there exists g−1 ∈ G such that
g ∗ g−1 = e = g−1 ∗ g (inverses);
g ∗ (h ∗ k) = (g ∗ h) ∗ k for all g,h, k ∈ G (associativity).

If also
g ∗ h = h ∗ g for all g,h ∈ G,

then the group is called commutative or abelian.

Julia Goedecke (Queens’) Abstraction in Mathematics 18/02/2013 10 / 44



Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Groups

Definition
A group is a set G with an operation ∗ satisfying the axioms

g ∗ h ∈ G for g,h ∈ G (closure);
there exists e ∈ G such that g ∗ e = g = e ∗ g for g ∈ G
(identity);
for every g ∈ G there exists g−1 ∈ G such that
g ∗ g−1 = e = g−1 ∗ g (inverses);
g ∗ (h ∗ k) = (g ∗ h) ∗ k for all g,h, k ∈ G (associativity).

If also
g ∗ h = h ∗ g for all g,h ∈ G,

then the group is called commutative or abelian.

Julia Goedecke (Queens’) Abstraction in Mathematics 18/02/2013 10 / 44



Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Equality and “similarity”

Let f : A −→ B be a function. Write aRf b when f (a) = f (b).

Equality Congruence “same image as”
a = a a ≡ a (mod n) aRf a
a = b ⇒ b = a a ≡ b ⇒ b ≡ a aRf b ⇒ bRf a
a = b and b = c
⇒ a = c

a ≡ b and b ≡ c
⇒ a ≡ c

aRf b and bRf c
⇒ aRf c
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Examples of abstract structures
Why bother?
Category Theory

Equivalence relations

Definition
An equivalence relation on a set X is a relation ∼ which
satisfies:

x ∼ x for all x ∈ X (reflexivity);
If x ∼ y then y ∼ x for all x , y ∈ X (symmetry);
If x ∼ y and y ∼ z then x ∼ z for all x , y , z ∈ X
(transitivity).
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Examples of abstract structures
Why bother?
Category Theory

Equivalence classes

Let ∼ be an equivalence relation on X .

Set of equivalence classes
The equivalence class of an element x ∈ X is

[x ] = {y ∈ X | y ∼ x}.

The equivalence classes partition X .
The set of all equivalence classes is denoted X/∼.

The surjection X −→ X/∼ makes connection between general
equivalence relation and equality.
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Why bother?
Category Theory

Other examples

R2, R3, ... lead to vector spaces.
Z and Zp for p prime lead to rings.
R with distance can lead to metric spaces.
...
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Examples of abstract structures
Why bother?
Category Theory

Ideas behind abstraction

Why do we bother with abstraction?

Find similarities between distinct situations.
Find the crucial properties needed for proofs.
Prove results for many examples at once.
Move ideas between different situations.
...
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Examples of abstract structures
Why bother?
Category Theory

Inner products

Definition
An inner product 〈−,−〉 on a vectorspace V is a positive
definite symmetric bilinear form.

form: 〈v ,w〉 ∈ R;
bilinear: 〈λv + µu,w〉 = λ〈v ,w〉+ µ〈u,w〉 and same in
second entry;
symmetric: 〈v ,w〉 = 〈w , v〉;
positive definite: 〈v , v〉 > 0 for v 6= 0.
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Examples of abstract structures
Why bother?
Category Theory

Examples of inner products

usual dot product on Rn;
variation: v>Aw for symmetric A with positive evalues;
〈A,B〉 = tr(AB>) on space of n × n matrices;

〈f ,g〉 =
∫ 1
−1 f (t)g(t)dt on space of real polynomials;

〈X ,Y 〉 = E(XY ), expected value of the product on a
suitably defined space of random variables.
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Examples of abstract structures
Why bother?
Category Theory

Cauchy-Schwarz inequality

Cauchy-Schwarz

For an inner product 〈−,−〉 on V , we have

〈x , y〉2 ≤ 〈x , x〉〈y , y〉.

Proof.

〈x + λy , x + λy〉 ≥ 0, so the poly 〈x , x〉+ 2λ〈x , y〉+ λ2〈y , y〉
has at most one root. So discriminant

〈x , y〉2 − 〈x , x〉〈y , y〉
〈y , y〉2

≤ 0

.
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Examples of abstract structures
Why bother?
Category Theory

Cauchy-Schwarz applied

(x1y1 + · · ·+ xnyn)
2 ≤ (x2

1 + · · ·+ x2
n )(y2

1 + · · ·+ y2
n )∣∣tr(AB>)

∣∣ ≤ tr(AA>)
1
2 tr(BB>)

1
2(∫ 1

−1 f (t)g(t)dt
)2
≤
∫ 1
−1 f (t)2dt

∫ 1
−1 g(t)2dt

E(XY )2 ≤ E(X 2)E(Y 2)
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

One more level of abstraction

We notice throughout our studies that certain objects come with
special maps:

objects “structure preserving” maps
sets functions
groups group homomorphisms
rings ring homomorphisms
modules/vector spaces linear maps
topological spaces continuous maps
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Abstraction in Pure Mathematics
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Examples of abstract structures
Why bother?
Category Theory

One more level of abstraction

What do they have in common?
We can compose them:

A −→ B −→ C

There is an identity:

A
1A //A f //B = A f //B = A f //B

1B //B

Composition is associative: (h◦g)◦f = h◦(g◦f )

A f //B
g //C h //D
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Definition of a category

A category C consists of
a collection obC of objects A,B,C, . . . and
for each pair of objects A,B ∈ obC, a collection
C(A,B) = HomC(A,B) of morphisms f : A −→ B,

equipped with
for each A ∈ obC, a morphism 1A : A −→ A, the identity,
for each tripel A,B,C ∈ obC, a composition

◦ : Hom(A,B)× Hom(B,C)−→ Hom(A,C)

(f ,g) 7−→ g◦f

such that the following axioms hold:
1 Identity: For f : A −→ B we have f ◦1A = f = 1B◦f .
2 Associativity: For f : A −→ B, g : B −→ C and h : C −→ D

we have h◦(g◦f ) = (h◦g)◦f .
Julia Goedecke (Queens’) Abstraction in Mathematics 18/02/2013 22 / 44
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Why bother?
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Definition of a category

A category C consists of
a collection obC of objects A,B,C, . . . and
for each pair of objects A,B ∈ obC, a collection
C(A,B) = HomC(A,B) of morphisms f : A −→ B,

equipped with
for each A ∈ obC, a morphism 1A : A −→ A, the identity,
for each tripel A,B,C ∈ obC, a composition
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

What is Category Theory?

One more level of abstraction.
addition and symmetries of polyhedra −→ groups
equality and congruence −→ equivalence relations
integers −→ ring theory

Category Theory is “mathematics about mathematics”.
sets, groups, vectorspaces etc. −→ categories

A language for mathematicians.
A way of thinking.

Julia Goedecke (Queens’) Abstraction in Mathematics 18/02/2013 23 / 44



Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Categorical point of view

In category theory, we are not only interested in objects (such
as sets, groups, ...), but how different objects of the same kind
relate to each other. We are interested in global structures and
connections.

Motto of category theory
We want to really understand how and why things work, so that
we can present them in a way which makes everything “look
obvious”.
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Examples of categories

Any collection of sets with a certain structure and
structure-preserving maps will form a category.

But also:
A group G is a one-object category with the group
elements as morphisms:

e ∈ G is identity morphism.
group multiplication is composition.

A poset P is a category:
The elements of P are the objects.
Hom(x , y) has one element if x ≤ y , empty otherwise.
Reflexivity gives identities.
Transitivity gives composition.
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Initial objects

There is exactly one group homomorphism from the
one-element group 0 to any group G.
There is exactly one linear map from the zero-space 0 to
any vector space V .
There is exactly one ring homomorphism from Z to any
other ring R.
There is exactly one function from ∅ to any set X .

Definition
An object I ∈ obC is called initial object when there is, for every
A ∈ obC, a unique morphism I −→ A in the category C.
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Terminal objects

There is exactly one function X −→ {∗} for each set X .
There is exactly one group homomorphism G −→ 0 for any
group G.
There is exactly one linear map V −→ 0 for every vector
space V .

Definition
An object T ∈ obC is called terminal object when there is, for
every A ∈ obC, a unique morphism A −→ T in C.
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Products

We can form a cartesian product of sets
A× B = {(a,b) | a ∈ A,b ∈ B}.
The cartesian product of groups can be equipped with a
pointwise group structure.
The cartesian product of topological spaces can be
equipped with the product topology.

Universal property of a product

C
∃! //

f

����
��

��
�

g
))RRRRRRRRRRRRRRRRRR A× B

π1
vvmmmmmmmmmmmmmm

π2

""FF
FF

FF
FF

F

A B
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Coproducts

Universal property of a coproduct

A

ι1 ""EE
EE

EE
EE

E
f

))RRRRRRRRRRRRRRRRRR B
ι2

vvmmmmmmmmmmmmmm

g����
��

��
�

A + B ∃!
// C

disjoint union of sets A
∐

B.
disjoint union of topological spaces.
free product of groups G ∗ H.
direct sum of modules M ⊕ N.
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Other examples

kernels
equalisers of two functions: {a | f (a) = g(a)}
pullbacks of two functions: {(a,b) | f (a) = g(b)}
enriched categories: the homsets could be abelian groups,
or posets, or ... (even categories)
internal homsets: the homsets could be themselves
objects of the category
...
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Functors

The “structure-preserving maps” of categories are:

Definition
A functor F between two categories C and D sends each object
A ∈ obC to an object FA ∈ obD and each morphism f : A −→ B
in C to Ff : FA −→ FB in D, such that

F1A = 1FA and
F (f ◦g) = Ff ◦Fg.
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Examples of functors

“Forgetful functors”: (group G) 7−→ (underlying set G),
(group hom f ) 7−→ (underlying function f ).
“Free functors”: (set X ) 7−→ (free group FX on X ),
function f induces group hom by defining it on generators.
Homology: for each n, a functor from topological spaces to
(abelian) groups.
Fundamental group: functor from pointed topological
spaces to groups.
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Natural transformations

“Maps between functors”

Definition
Given functors F ,G from C to D, a natural transformation
α : F −→ G consists of morphisms αA : FA −→ GA in D for
each object A ∈ obC, such that

FA
αA //

Ff
��

GA

Gf
��

FB αB
// GB

commutes for each f : A −→ B in C.
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Examples of abstract structures
Why bother?
Category Theory

Examples of natural transformations

Natural isomorphism between identity functor and double
dual functor on vector spaces
Functors between groups are group homomorphisms.
Natural transformations between such functors are
conjugacies.
The Hurewitz homomorphism between homotopy groups
πn(X , x) and homology groups Hn(X ).
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Mathematical formulation
Mathematical modelling
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Mathematical formulation
Mathematical modelling

Problems from the “real world”

Problem
Louise receives one packet of sweets. She is really happy and
eats 5 immediately. Then her little sister arrives and also wants
some sweets. So Louise splits the rest of the sweets equally
between the two of them. Both girls end up with 15 sweets.
How many sweets were in the packet in the beginning?

Mathematical formulation
1
2(x − 5) = 15
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Mathematical formulation
Mathematical modelling

Different kinds of abstraction

So far: abstraction meant generalisation
Now: abstraction as modelling

Mathematical modelling is used in
physics
engineering
banking
almost everywhere!
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Mathematical formulation
Mathematical modelling

Identity card for tortoises

Aim: to protect endangered species.
How? monitor and limit international trade of endangered
wild species.
Problem: Must be able to distinguish between wild and
bred animals.
Solution: usually transponders.
Problem: risky operations: sometimes perilous.
Wanted: non-invasive method.

Can the shell of a tortoise be used as an “identity card”?
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Mathematical formulation
Mathematical modelling

Testudo kleinmanni

Back and front shell of an Egyptian tortoise:
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Mathematical formulation
Mathematical modelling

Abstraction of the problem

Idea: A method to identify the tortoise which does not depend
on colour or size.
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Abstraction of the problem
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Abstraction in language
Abstraction in Pure Mathematics

Abstraction in Applied Mathematics

Mathematical formulation
Mathematical modelling

Solution

Create data base of bred animals.
Customs officer photographs bottom shell.
Via a computer programme three points are selected.
The computer programme computes not absolute lengths,
but proportions of lengths.
The computer programme compares the sum of the
calculated values with the identity card.
If there is too much deviance (some tolerance is agreed
upon), then it is not the same tortoise.
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Conclusion

Abstraction is

generalisation or modelling.

Abstraction can
make work easier/shorter,
structure one’s thoughts,
clarify connections,
open up new areas,
solve problems,
give new ideas.

Abstraction is fun!
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Thanks for listening!
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