Relative Frobenius algebras are groupoids

Chris Heunen Ivan Contreras Alberto Cattaneo

PSSL 93, April 14, 2012

Introduction

Groupoids:

- ubiquitous: analysis, noncommutative geometry, quantum
- various definitions "groups with more than one object":
 - category whose morphisms are invertible
 - groups with partial multiplication
- generalize to quantum groups / Hopf algebras

Introduction

Groupoids:

- ubiquitous: analysis, noncommutative geometry, quantum
- various definitions "groups with more than one object":
 - category whose morphisms are invertible
 - groups with partial multiplication
- generalize to quantum groups / Hopf algebras

Frobenius algebras:

- algebra, (topological) quantum (field) theory
- definable in dagger monoidal categories (no limits!)

Introduction

Groupoids:

- ubiquitous: analysis, noncommutative geometry, quantum
- various definitions "groups with more than one object":
 - category whose morphisms are invertible
 - groups with partial multiplication
- generalize to quantum groups / Hopf algebras

Frobenius algebras:

- algebra, (topological) quantum (field) theory
- definable in dagger monoidal categories (no limits!)

Will make connection precise:

groupoid (in Set) = special dagger Frobenius algebra (in Rel)

Groupoids

Internal definition:

$$G_0 \xrightarrow[\leftarrow]{e}{\underset{s \longrightarrow s}{\overset{c}{\longrightarrow}}} G_1 \xleftarrow[e]{f_1} G_2 = G_1 \times_{G_0} G_1$$

subject to familiar equations: $m \circ (i \times 1) \circ \Delta = e \circ s$

Notice: need finite limits in ambient category

Frobenius algebras

In monoidal category with dagger $\dagger: \mathbf{C}^{\mathrm{op}} \to \mathbf{C}, X^{\dagger} = X, f^{\dagger\dagger} = f, (f \otimes g)^{\dagger} = f^{\dagger} \otimes g^{\dagger}$, consider $m: X \otimes X \to X, u: I \to X$ satisfying:

Frobenius algebras - why interesting?

[Coecke, Pavlovic, Vicary]:

- commutative Frobenius algebra in FHilb = orthonormal basis
- Frob algebra in **FHilb** = fin-dim complex semisimple algebra

But:

• (X, m, m^{\dagger}) is both Frobenius and Hopf $\implies X \cong I$

Relative Frobenius algebras

Category Rel:

- objects are sets
- morphisms $X \to Y$ are relations $R \subseteq X \times Y$
- ► $S \circ R = \{(x, z) \mid \exists y : (x, y) \in R, (y, z) \in S\}$
- $R^{\dagger} = \{(y, x) \mid (x, y) \in R\}$
- \blacktriangleright \otimes is cartesian product

Relative Frobenius algebra = Frobenius algebra in Rel

[Pavlovic]:

- commutative relative Frobenius algebra
 - = disjoint union of abelian groups

From groupoids to relative Frobenius algebras

Given \mathbf{G} , set

▶
$$X = G_1$$

▶ $m = \{((g, f), g \circ f) | s(g) = t(f)\}$ ("graph of multiplication")
▶ $u = \{(*, e(x)) | x \in G_0\}$ ("all identities")
Then:

•
$$m \circ m^{\dagger} = \{(f, f) \mid \exists g, h: s(h) = t(g), f = h \circ g\} = 1$$

• $m^{\dagger} \circ m = \{((a, b), (c, d)) \mid a \circ b = c \circ d\}$
 $= \{((a, b), (c, d)) \mid \exists e: e \circ d = b, a \circ e = c\}$
 $= (m \times 1) \circ (1 \times m^{\dagger})$

From relative Frobenius algebras to groupoids

If (X, m, u) is relative Frobenius algebra, then:

- *m* is single-valued: may write $f = h \circ g$ (when $h \circ g \downarrow !$)
- Frobenius law means

$$a \circ b = c \circ d \iff \exists e \colon b = e \circ d, c = a \circ e$$

Set

Theorem: this data forms a (small) groupoid.

Choices of morphisms:

- ► Gpd: functors (natural choice for groupoids)
- ► **Gpd**^{mfunc}: *multi-valued functors*
- **Gpd**^{rel}: subgroupoids of $G \times H$ (natural choice for relations)
- ▶ **Frob**(**Rel**)^{rel}: relations such that

- Frob(Rel): relations preserving multiplication and inverses (natural for Frobenius algebras)
- Frob(Rel)^{func}: functions (relations with a right adjoint) preserving multiplication and inverses
- Equivalences?

Theorem: constructions are functorial, give isomorphisms:

H*-algebras

Drop unitality, and replace Frobenius law by its 'square root': there is involution $*: \mathbf{C}(I, X)^{\mathrm{op}} \to \mathbf{C}(I, X)$ with

[Abramsky, Heunen]:

commutative H*-algebra in Hilb = orthonormal basis

Semigroupoids

- "Categories without identities (and inverses)"
- Internal definition:

• Semifunctors: morphisms $G_i \rightarrow G'_i$ commuting with the above

Semigroupoids

- "Categories without identities (and inverses)"
- Internal definition:

- Semifunctors: morphisms $G_i \rightarrow G'_i$ commuting with the above
- Regular: each f has pseudoinverse f^* : $ff^*f = f$, $f^*ff^* = f^*$
- Locally cancellative: $fhh^* = gh^* \implies fh = g$
- Lemma: a locally cancellative regular semigroupoid is a groupoid if and only if it has identities

Thm: relative H*-algebra = locally cancellative regular semigpd

Theorem: there are adjunctions

The bottom are the largest subcategories of making the top adjunctions into equivalences (which, in that case, are isomorphisms).

Theorem: there are adjunctions

The bottom are the largest subcategories of making the top adjunctions into equivalences (which, in that case, are isomorphisms).

Conclusion

- Can study groupoid-like objects in non-cartesian categories: fundamental uses of groupoids?
- Investigate setting of topological/localic relations; Kleisli category of powerset monad?
- Geometric quantization commutes with reduction: (symplectic) manifolds and (canonical) relations.
- What are groupoids in **FHilb**?