Generalizing canonical extension to the categorical setting

Dion Coumans

Radboud University Nijmegen

Cambridge, April 2012

1 Introduction to duality theory and canonical extension

2 Semantics for coherent first order logic (\land , \lor , \bot , \top , \exists):

オロト オポト オヨト オヨト ニヨー ろくで

- Coherent categories
- Coherent hyperdoctrines
- 3 Canonical extension in the categorical setting
- 4 Relate to Makkai's topos of types

Stone duality

Boolean algebras:structures $(B, \land, \lor, \neg, 0, 1)$.Boolean spaces:compact, totally disconnected, Hausdorff spaces.Boolean algebras \leftrightarrows Boolean spacesCl(X)Hausdorff spacesCl(X) \longleftrightarrow XB \mapsto $(PrIdl(B), \tau_B)$

Stone duality

Boolean algebras:structures $(B, \land, \lor, \neg, 0, 1)$.Boolean spaces:compact, totally disconnected, Hausdorff spaces.Boolean algebras \leftrightarrows Cl(X) \longleftrightarrow X

 $B \mapsto (PrIdl(B), \tau_B)$

Stone Representation Theorem: every Boolean algebra is embeddable in a powerset algebra.

Proof: for a Boolean algebra B,

 $B \cong Cl(PrIdl(B)) \hookrightarrow \mathcal{P}(PrIdl(B)).$

Canonical extension: algebraic description of topological duality. Study $B \cong Cl(PrIdl(B)) \hookrightarrow \mathcal{P}(PrIdl(B)) = B^{\delta}$.

CABA = complete and atomic Boolean algebras.

Boolean spaces = compact, totally disconnected Hausdorff spaces. **Canonical extension:** algebraic description of topological duality. Study $L \cong CptOp(PrIdl(L)) \hookrightarrow Up(PrIdl(L)) = L^{\delta}$.

 DL^+ = completely distributive algebraic lattices. spectral spaces = sober spaces with a basis of compact opens.

 $\mathbf{DL}^+ =$ completely distributive algebraic lattices.

Canonical extension is left adjoint to $\mathbf{DL}^+ \hookrightarrow \mathbf{DL}$.

Universal characterization of canonical extension:

7/1

$$L \xrightarrow{e} L^{\delta}$$

$$f \xrightarrow{\downarrow} f$$

$$K$$

where $L \in \mathbf{DL}$ and $K, L^{\delta} \in \mathbf{DL}^+$.

Coherent logic = fragment of first order logic in $\land, \lor, \bot, \top, \exists$.

A coherent category is a category \mathbf{C} satisfying

- **1** C has finite limits;
- 2 C has stable finite unions;
- **3** C has stable images.

Coherent logic = fragment of first order logic in $\land, \lor, \bot, \top, \exists$.

A coherent category is a category C satisfying

- **1** C has finite limits;
- 2 C has stable finite unions;
- **3** C has stable images.

Remark: all subobject posets are distributive lattices.

Idea: apply canonical extension to those separately.

Coherent categories and coherent hyperdoctrines

A coherent category is a category \mathbf{C} satisfying

- **1** C has finite limits;
- **2** C has stable finite unions;
- **3** C has stable images.

The functor $Sub_{\mathbf{C}} \colon \mathbf{C}^{op} \to \mathbf{DL}$ is a coherent hyperdoctrine.

Coherent categories and coherent hyperdoctrines

A coherent category is a category ${\bf C}$ satisfying

- 1 C has finite limits;
- **2** C has stable finite unions;
- **3** C has stable images.

The functor $Sub_{\mathbf{C}} \colon \mathbf{C}^{op} \to \mathbf{DL}$ is a coherent hyperdoctrine.

- A coherent hyperdoctrine is a functor $P: \mathbf{B}^{op} \to \mathbf{DL}$ s.t.
 - 1 B has finite limits;
 - 2 for all $A \xrightarrow{\alpha} B$ in **B**, $P(\alpha)$ has a left adjoint satisfying Frobenius and Beck-Chevalley.

Coherent categories and coherent hyperdoctrines

Proposition: there is a 2-categorical adjunction

```
\mathcal{A} \colon \mathbf{CHyp} \leftrightarrows \mathbf{Coh} \colon \mathcal{S},
```

where $\mathcal{A} \dashv \mathcal{S}$ and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

Proposition: there is a 2-categorical adjunction

 $\mathcal{A} \colon \mathbf{CHyp} \leftrightarrows \mathbf{Coh} \colon \mathcal{S},$

イロト 不得 トイヨト イヨト ヨー ろくつ

where $\mathcal{A} \dashv \mathcal{S}$ and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

For
$$\mathbf{C} \in \mathbf{Coh}$$
, $\mathcal{S}(\mathbf{C}) = \mathcal{S}_{\mathbf{C}} \colon \mathbf{C}^{op} \to \mathbf{DL}$
 $A \mapsto Sub_{\mathbf{C}}(A)$

Proposition: there is a 2-categorical adjunction

 $\mathcal{A}\colon\mathbf{CHyp}\leftrightarrows\mathbf{Coh}\colon\mathcal{S},$

where $\mathcal{A} \dashv \mathcal{S}$ and $\mathcal{A}(\mathcal{S}(\mathbf{C})) \simeq \mathbf{C}$.

For
$$\mathbf{C} \in \mathbf{Coh}$$
, $\mathcal{S}(\mathbf{C}) = \mathcal{S}_{\mathbf{C}} \colon \mathbf{C}^{op} \to \mathbf{DL}$
 $A \mapsto Sub_{\mathbf{C}}(A)$

For $P: \mathbf{B}^{op} \to \mathbf{DL}$, $\mathcal{A}(P)$ is the category with:

objects are pairs (A, a), where $A \in \mathbf{B}$, $a \in P(A)$;

a morphism $(A, a) \rightarrow (B, b)$ is an element $f \in P(A \times B)$ which is a functional relation $(A, a) \rightarrow (B, b)$. **Recall:** canonical extension for DL's is a functor $\mathbf{DL} \xrightarrow{(.)^{\delta}} \mathbf{DL}^+$.

Definition

For a coh. hyperdoctrine $P: \mathbf{B}^{op} \to \mathbf{DL}$ we define: $P^{\delta}: \mathbf{B}^{op} \xrightarrow{P} \mathbf{DL} \xrightarrow{(.)^{\delta}} \mathbf{DL}.$

Proposition

For a coh. hyperdoctrine P, P^{δ} is again a coh. hyperdoctrine.

Proof: check that, for all $A \xrightarrow{\alpha} B$ in **B**, $P^{\delta}(\alpha)$ has a left adjoint satisfying BC and Frobenius.

We have:

• adjunction \mathcal{A} : **CHyp** \leftrightarrows **Coh**: \mathcal{S} , **C** $\simeq \mathcal{A}(\mathcal{S}_{\mathbf{C}})$;

イロト 不得 とくきとうきょう ほう

16/1

• for $P \in \mathbf{CHyp}$, $P^{\delta} \colon \mathbf{B}^{op} \xrightarrow{P} \mathbf{DL} \xrightarrow{(...)^{\delta}} \mathbf{DL}$.

Definition

For a coherent category ${\bf C}$ we define:

$$\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}}).$$

We have:

• adjunction \mathcal{A} : **CHyp** \leftrightarrows **Coh**: \mathcal{S} , **C** $\simeq \mathcal{A}(\mathcal{S}_{\mathbf{C}})$;

イロン 不得入 イヨン イヨン ニヨー

17/1

• for $P \in \mathbf{CHyp}$, $P^{\delta} \colon \mathbf{B}^{op} \xrightarrow{P} \mathbf{DL} \xrightarrow{(.)^{\delta}} \mathbf{DL}$.

Definition

For a coherent category ${\bf C}$ we define:

$$\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}}).$$

Proposition

For a distributive lattice L, $\mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{L}}) \simeq \mathbf{L}^{\delta}$.

Properties of $\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}})$:

- **1** subobject lattices are in **DL**⁺;
- 2 pullback morphisms are complete lattice homomorphisms.

イロト (個) (目) (目) (日) (の)

18/1

 Coh^+ = coherent categories satisfying (1) and (2).

Properties of $\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}})$:

- **1** subobject lattices are in **DL**⁺;
- 2 pullback morphisms are complete lattice homomorphisms.
- Coh^+ = coherent categories satisfying (1) and (2).

Universal characterization:

$$\mathbf{C} \xrightarrow{M_0} \mathbf{C}^{\delta}$$

where $C \in Coh$, $E, C^{\delta} \in Coh^+$, M a coherent functor satisfying:

Properties of $\mathbf{C}^{\delta} = \mathcal{A}(\mathcal{S}^{\delta}_{\mathbf{C}})$:

- **1** subobject lattices are in **DL**⁺;
- 2 pullback morphisms are complete lattice homomorphisms.
- Coh^+ = coherent categories satisfying (1) and (2).

Universal characterization:

$$\mathbf{C} \xrightarrow{M_0} \mathbf{C}^{\delta} \\ \swarrow_{M} \bigvee_{\mathbf{V}}^{\tilde{M}} \mathbf{E}$$

where $\mathbf{C} \in \mathbf{Coh}$, $\mathbf{E}, \mathbf{C}^{\delta} \in \mathbf{Coh}^+$, M a coherent functor satisfying: for all $A \xrightarrow{\alpha} B$ in \mathbf{C} , ρ (prime) filter in $\mathcal{S}_C(A)$, $\exists_{M(\alpha)}(\bigwedge\{M(U) \mid U \in \rho\}) \cong \bigwedge\{\exists_{M(\alpha)}(M(U)) \mid U \in \rho\}.$

Heyting categories provide semantics for first order logic.

Canonical extension interacts well with Heyting structure:

- for a coherent category C, C^{δ} is a Heyting category;
- for a morphism of Heyting categories $F \colon \mathbf{C} \to \mathbf{D}$,

$$F^{\delta} \colon \mathbf{C}^{\delta} \to \mathbf{D}^{\delta}$$

<□> <同> <巨> <巨> <巨> <巨> < 三 < つへの

is again a morphism of Heyting categories.

Topos of types was introduced by Makkai in 1979 as:

- 'a reasonable codification of the 'discrete' (non topological) syntactical structure of types of the theory',
- a tool to prove representation theorems,
- 'conceptual tool meant to enable us to formulate precisely certain natural intuitive questions'.

Some later work by: Magnan & Reyes and Butz.

Topos of types was introduced by Makkai in 1979 as:

- 'a reasonable codification of the 'discrete' (non topological) syntactical structure of types of the theory',
- a tool to prove representation theorems,
- 'conceptual tool meant to enable us to formulate precisely certain natural intuitive questions'.

Some later work by: Magnan & Reyes and Butz.

Alternative construction:

The functor $\mathcal{S}^{\delta}_{\mathbf{C}} \colon \mathbf{C}^{op} \to \mathbf{DL}$ is an internal frame in $Sh(\mathbf{C}, J_{coh})$. Then $Sh(\mathcal{S}^{\delta}_{\mathbf{C}}) \simeq T(\mathbf{C}) =$ topos of types of \mathbf{C} . **Theorem:** for a coherent functor $F: \mathbf{C} \to \mathbf{D}$,

- if F is conservative, then $T(F): T(\mathbf{D}) \to T(\mathbf{C})$ is a geometric surjection;
- if F is a morphism of Heyting categories, then $T(F): T(\mathbf{D}) \to T(\mathbf{C})$ is open.

Topos of types and the class of models

For a distributive lattice L, prime ideals of L = lattice homo

f
$$L$$
 = lattice homomorphisms $L \rightarrow \mathbf{2}$
= 'models of L '.

 $L^{\delta} = Up(Mod(L)).$

Categorical analogue:

 $Mod(\mathbf{C}) = \text{coherent functors } M \colon \mathbf{C} \to \mathbf{Set}.$ Study: $\mathbf{Set}^{Mod(\mathbf{C})}.$

We have to restrict to an appropriate subcategory \mathcal{K} of $Mod(\mathbf{C})$.

Question: How does $\mathbf{Set}^{\mathcal{K}}$ relate to $T(\mathbf{C}) = Sh(\mathcal{S}^{\delta}_{\mathbf{C}})$?

Topos of types and the class of models

Question: How does $\mathbf{Set}^{\mathcal{K}}$ relate to $T(\mathbf{C}) = Sh(\mathcal{S}^{\delta}_{\mathbf{C}})$?

Evaluation functor $ev \colon \mathbf{C} \to \mathbf{Set}^{\mathcal{K}}$ $A \mapsto ev(A) \colon \mathcal{K} \to \mathbf{Set}$ $M \mapsto M(A)$

Gives a geometric morphism $\phi_{ev} \colon \mathbf{Set}^{\mathcal{K}} \to Sh(\mathbf{C}, J_{coh}).$

Topos of types and the class of models

Question: How does $\mathbf{Set}^{\mathcal{K}}$ relate to $T(\mathbf{C}) = Sh(\mathcal{S}^{\delta}_{\mathbf{C}})$?

Evaluation functor $ev \colon \mathbf{C} \to \mathbf{Set}^{\mathcal{K}}$ $A \mapsto ev(A) \colon \mathcal{K} \to \mathbf{Set}$ $M \mapsto M(A)$

Gives a geometric morphism $\phi_{ev} \colon \mathbf{Set}^{\mathcal{K}} \to Sh(\mathbf{C}, J_{coh}).$

Theorem: the topos of types yields the hyper-connected localic factorization of $\mathbf{Set}^{\mathcal{K}} \xrightarrow{\phi_{ev}} Sh(\mathbf{C}, J_{coh})$:

We have: notion of canonical extension for coherent categories

We would like to:

• Study the following diagram (where $\mathcal{K} \subseteq Mod(\mathbf{C})$):

- Apply the developed theory in the study of first order logics.
- In particular: study interpolation problems for first order logics, e.g. for IPL + (φ → ψ) ∨ (ψ → φ).