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Outline

Introduction to duality theory and canonical extension

Semantics for coherent first order logic (A, Vv, L, T, 3):

m Coherent categories
m Coherent hyperdoctrines

Canonical extension in the categorical setting

Relate to Makkai's topos of types



Stone duality

Boolean algebras:  structures (B, A,V,—,0,1).

Boolean spaces: compact, totally disconnected, Hausdorff spaces.
Boolean algebras = Boolean spaces
Cl(X) — X
B — (Prldl(B),T8)



Stone duality

Boolean algebras:  structures (B, A,V,—,0,1).

Boolean spaces: compact, totally disconnected, Hausdorff spaces.
Boolean algebras = Boolean spaces
Cl(X) — X
B — (Prldl(B),T8)

Stone Representation Theorem: every Boolean algebra is
embeddable in a powerset algebra.

Proof: for a Boolean algebra B,
B = Cl(PrlIdl(B)) — P(PrlIdi(B)).



Stone duality and canonical extension

Canonical extension: algebraic description of topological duality.
Study B = CI(Prldl(B)) < P(PrIdl(B)) = B°.

At
CABA Sets
P
Qe U U
Boolean Pridl Boolean
algebras ol spaces
CABA = complete and atomic Boolean algebras.
Boolean spaces = compact, totally disconnected

Hausdorff spaces.



Canonical extension of distributive lattices

Canonical extension: algebraic description of topological duality.
Study L = CptOp(PrlIdi(L)) — Up(PrIdi(L)) = L.

J'OO
DL™T posets
Up
Qe U U
distributive Pridl spectral
lattices CpiOp spaces
DL™ = completely distributive algebraic lattices.
spectral spaces = sober spaces with a basis of compact opens.



Canonical extension of distributive lattices

DL™ = completely distributive algebraic lattices.

Canonical extension is left adjoint to DL < DL.

Universal characterization of canonical extension:

L_6>L5

Xéf

K

where L € DL and K, L° € DL™.



Semantics for coherent logic

Coherent logic = fragment of first order logic in A,V, L, T,3.

A coherent category is a category C satisfying
C has finite limits;
C has stable finite unions;

C has stable images.



Semantics for coherent logic

Coherent logic = fragment of first order logic in A,V, L, T,3.

A coherent category is a category C satisfying

C has finite limits;
C has stable finite unions;

C has stable images.

Remark: all subobject posets are distributive lattices.

Idea: apply canonical extension to those separately.



Coherent categories and coherent hyperdoctrines

A coherent category is a category C satisfying

C has finite limits;
C has stable finite unions;

C has stable images.

The functor Subc: C°? — DL is a coherent hyperdoctrine.
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Coherent categories and coherent hyperdoctrines

A coherent category is a category C satisfying

C has finite limits;
C has stable finite unions;

C has stable images.
The functor Subc: C°? — DL is a coherent hyperdoctrine.

A coherent hyperdoctrine is a functor P: B°? — DL s.t.

B has finite limits;

forall A2 Bin B, P(«) has a left adjoint satisfying
Frobenius and Beck-Chevalley.
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Coherent categories and coherent hyperdoctrines

Proposition: there is a 2-categorical adjunction
A: CHyp < Coh: S,

where 4 S and A(S(C)) ~ C.
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Coherent categories and coherent hyperdoctrines

Proposition: there is a 2-categorical adjunction
A: CHyp < Coh: S,

where 4 S and A(S(C)) ~ C.

For C € Coh, S(C)=S8c:C®? — DL
A Subc(A)
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Coherent categories and coherent hyperdoctrines

Proposition: there is a 2-categorical adjunction
A: CHyp < Coh: S,

where 4 S and A(S(C)) ~ C.

For C € Coh, S(C)=S8c:C®? — DL
A Subc(A)

For P: B — DL, A(P) is the category with:

objects are pairs (A, a), where A € B, a € P(A);

a morphism (A, a) — (B,b) is an element f € P(A x B)
which is a functional relation (A, a) — (B,b).

14/1



Canonical extension of coherent hyperdoctrines

5
Recall: canonical extension for DL's is a functor DL i> DL™T.

Definition
For a coh. hyperdoctrine P: B°? — DL we define:

. op P (')5
P°: B’ — DL — DL.

Proposition
For a coh. hyperdoctrine P, P? is again a coh. hyperdoctrine.

Proof: check that, for all A % B in B, P°(a) has a left adjoint
satisfying BC and Frobenius.
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Canonical extension of coherent categories

We have:
m adjunction A: CHyp < Coh: S, C ~ A(Sc);

5
u for P € CHyp, P*: B» L DL 25 DLL.

Definition

For a coherent category C we define:
C2 = A(SY).
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Canonical extension of coherent categories

We have:
m adjunction A: CHyp < Coh: S, C ~ A(Sc);

5
u for P € CHyp, P*: B» L DL 25 DLL.

Definition

For a coherent category C we define:
C2 = A(SY).

Proposition
For a distributive lattice L, A(S{) ~ LY.
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Canonical extension of coherent categories

Properties of C° = A(SY):

subobject lattices are in DL™;

pullback morphisms are complete lattice homomorphisms.

Coh™ = coherent categories satisfying (1) and (2).
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Canonical extension of coherent categories

Properties of C° = A(SY):

subobject lattices are in DL™;

pullback morphisms are complete lattice homomorphisms.
Coh™ = coherent categories satisfying (1) and (2).

. .. M,
Universal characterization: C—> 9

M
N

E

where C € Coh, E,C° € Coh™, M a coherent functor satisfying:
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Canonical extension of coherent categories

Properties of C° = A(SY):

subobject lattices are in DL™;

pullback morphisms are complete lattice homomorphisms.
Coh™ = coherent categories satisfying (1) and (2).

. .. M,
Universal characterization: C—> 9

M
N

E

where C € Coh, E,C° € Coh™, M a coherent functor satisfying:
for all A% B in C, p (prime) filter in Sc(A),
(@) (NMMU) U € p}) = N By (M(U)) | U € p}.
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Canonical extension of Heyting categories

Heyting categories provide semantics for first order logic.
Canonical extension interacts well with Heyting structure:
m for a coherent category C, C? is a Heyting category;
m for a morphism of Heyting categories F': C — D,
F°:. C’ » D’

is again a morphism of Heyting categories.
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Topos of types

Topos of types was introduced by Makkai in 1979 as:

m ‘a reasonable codification of the ‘discrete’ (non topological)
syntactical structure of types of the theory’,

m a tool to prove representation theorems,

m ‘conceptual tool meant to enable us to formulate precisely
certain natural intuitive questions’.

Some later work by: Magnan & Reyes and Butz.
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Topos of types

Topos of types was introduced by Makkai in 1979 as:

m ‘a reasonable codification of the ‘discrete’ (non topological)
syntactical structure of types of the theory’,

m a tool to prove representation theorems,

m ‘conceptual tool meant to enable us to formulate precisely
certain natural intuitive questions’.

Some later work by: Magnan & Reyes and Butz.

Alternative construction:
The functor Sé: C° — DL is an internal frame in Sh(C, Jeop).
Then Sh(SY) ~ T(C) = topos of types of C.
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Topos of types and morphisms

Theorem: for a coherent functor F': C — D,

m if F' is conservative, then T(F): T(D) — T(C) is a
geometric surjection;

m if F'is a morphism of Heyting categories, then
T(F): T(D) — T(C) is open.
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Topos of types and the class of models

For a distributive lattice L,

prime ideals of . = lattice homomorphisms L — 2
= ‘models of L.

L% = Up(Mod(L)).

Categorical analogue:
Mod(C) = coherent functors M : C — Set.

Study: SetMod(©),

We have to restrict to an appropriate subcategory K of Mod(C).

Question: How does Set® relate to T(C) = Sh(S)?
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Topos of types and the class of models

Question: How does Set” relate to T(C) = Sh(SL)?

Evaluation functor ev: C — Seth

A — ev(d): K — Set
M — M((A)

Gives a geometric morphism ¢, : Set® — Sh(C, Jeon)-
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Topos of types and the class of models

Question: How does Set” relate to T(C) = Sh(SL)?

Evaluation functor ev: C — Seth

A — ev(d): K — Set
M — M((A)

Gives a geometric morphism ¢, : Set® — Sh(C, Jeon)-

Theorem: the topos of types yields the hyper-connected localic
factorization of Set®® 22 Sh(C, Jeon):

7(C)

o

Set’C W) Sh(ca Jcoh)
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Future work

We have: notion of canonical extension for coherent categories

We would like to:
m Study the following diagram (where K C Mod(C)):

T(C)

|

Set’C E)) Sh(ca Jcoh)

m Apply the developed theory in the study of first order logics.

m In particular: study interpolation problems for first order
logics, e.g. for IPL 4+ (¢ — ¥) V (v — ¢).
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