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Stone duality

Boolean algebras: structures (B,∧,∨,¬, 0, 1).
Boolean spaces: compact, totally disconnected, Hausdorff spaces.

Boolean algebras � Boolean spaces

Cl(X) ←[ X

B 7→ (PrIdl(B), τB)

Stone Representation Theorem: every Boolean algebra is
embeddable in a powerset algebra.

Proof: for a Boolean algebra B,

B ∼= Cl(PrIdl(B)) ↪→ P(PrIdl(B)).
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Stone duality and canonical extension

Canonical extension: algebraic description of topological duality.

Study B ∼= Cl(PrIdl(B)) ↪→ P(PrIdl(B)) = Bδ.

CABA

U

��

At //
Sets

P
oo

Boolean
algebras

PrIdl //

( )δ

OO

Boolean
spaces

Cl
oo

U

OO

CABA = complete and atomic Boolean algebras.

Boolean spaces = compact, totally disconnected
Hausdorff spaces.
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Canonical extension of distributive lattices

Canonical extension: algebraic description of topological duality.

Study L ∼= CptOp(PrIdl(L)) ↪→ Up(PrIdl(L)) = Lδ.

DL+

U

��

J∞
//
posets

Up
oo

distributive
lattices

PrIdl //

( )δ

OO

spectral
spaces

CptOp
oo

U

OO

DL+ = completely distributive algebraic lattices.

spectral spaces = sober spaces with a basis of compact opens.
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Canonical extension of distributive lattices

DL+ = completely distributive algebraic lattices.

Canonical extension is left adjoint to DL+ ↪→ DL.

Universal characterization of canonical extension:

L
e //

f   @
@@

@@
@@

@ Lδ

f̃
��
K

where L ∈ DL and K,Lδ ∈ DL+.
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Semantics for coherent logic

Coherent logic = fragment of first order logic in ∧,∨,⊥,>,∃.

A coherent category is a category C satisfying

1 C has finite limits;

2 C has stable finite unions;

3 C has stable images.

Remark: all subobject posets are distributive lattices.

Idea: apply canonical extension to those separately.
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Coherent categories and coherent hyperdoctrines

A coherent category is a category C satisfying

1 C has finite limits;

2 C has stable finite unions;

3 C has stable images.

The functor SubC : Cop → DL is a coherent hyperdoctrine.

A coherent hyperdoctrine is a functor P : Bop → DL s.t.

1 B has finite limits;

2 for all A
α−→ B in B, P (α) has a left adjoint satisfying

Frobenius and Beck-Chevalley.
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Coherent categories and coherent hyperdoctrines

Proposition: there is a 2-categorical adjunction

A : CHyp � Coh : S,

where A a S and A(S(C)) ' C.

For C ∈ Coh, S(C) = SC : Cop → DL
A 7→ SubC(A)

For P : Bop → DL, A(P ) is the category with:

objects are pairs (A, a), where A ∈ B, a ∈ P (A);

a morphism (A, a)→ (B, b) is an element f ∈ P (A×B)
which is a functional relation (A, a)→ (B, b).
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Canonical extension of coherent hyperdoctrines

Recall: canonical extension for DL’s is a functor DL
( )δ−−→ DL+.

Definition

For a coh. hyperdoctrine P : Bop → DL we define:

P δ : Bop P−→ DL
( )δ−−→ DL.

Proposition

For a coh. hyperdoctrine P , P δ is again a coh. hyperdoctrine.

Proof: check that, for all A
α−→ B in B, P δ(α) has a left adjoint

satisfying BC and Frobenius.
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Canonical extension of coherent categories

We have:

adjunction A : CHyp � Coh : S, C ' A(SC);

for P ∈ CHyp, P δ : Bop P−→ DL
( )δ−−→ DL.

Definition
For a coherent category C we define:

Cδ = A(SδC).

Proposition
For a distributive lattice L, A(SδL) ' Lδ.
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Canonical extension of coherent categories

Properties of Cδ = A(SδC):

1 subobject lattices are in DL+;

2 pullback morphisms are complete lattice homomorphisms.

Coh+ = coherent categories satisfying (1) and (2).

Universal characterization: C
M0 //

M   A
AA

AA
AA

A Cδ

M̃
��
E

where C ∈ Coh, E,Cδ ∈ Coh+, M a coherent functor satisfying:

for all A
α−→ B in C, ρ (prime) filter in SC(A),

∃M(α)(
∧
{M(U) |U ∈ ρ}) ∼=

∧
{∃M(α)(M(U)) |U ∈ ρ}.
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Canonical extension of Heyting categories

Heyting categories provide semantics for first order logic.

Canonical extension interacts well with Heyting structure:

for a coherent category C, Cδ is a Heyting category;

for a morphism of Heyting categories F : C→ D,

F δ : Cδ → Dδ

is again a morphism of Heyting categories.
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Topos of types

Topos of types was introduced by Makkai in 1979 as:

‘a reasonable codification of the ‘discrete’ (non topological)
syntactical structure of types of the theory’,

a tool to prove representation theorems,

‘conceptual tool meant to enable us to formulate precisely
certain natural intuitive questions’.

Some later work by: Magnan & Reyes and Butz.

Alternative construction:

The functor SδC : Cop → DL is an internal frame in Sh(C, Jcoh).

Then Sh(SδC) ' T (C) = topos of types of C.
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Topos of types and morphisms

Theorem: for a coherent functor F : C→ D,

if F is conservative, then T (F ) : T (D)→ T (C) is a
geometric surjection;

if F is a morphism of Heyting categories, then
T (F ) : T (D)→ T (C) is open.
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Topos of types and the class of models

For a distributive lattice L,

prime ideals of L = lattice homomorphisms L→ 2
= ‘models of L’.

Lδ = Up(Mod(L)).

Categorical analogue:

Mod(C) = coherent functors M : C→ Set.

Study: SetMod(C).

We have to restrict to an appropriate subcategory K of Mod(C).

Question: How does SetK relate to T (C) = Sh(SδC)?
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Topos of types and the class of models

Question: How does SetK relate to T (C) = Sh(SδC)?

Evaluation functor ev : C → SetK

A 7→ ev(A) : K → Set
M 7→ M(A)

Gives a geometric morphism φev : Set
K → Sh(C, Jcoh).

Theorem: the topos of types yields the hyper-connected localic

factorization of SetK
φev−−→ Sh(C, Jcoh):

T (C)

����
SetK φev

// //

88 88rrrrrrrrrr
Sh(C, Jcoh)
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Future work

We have: notion of canonical extension for coherent categories

We would like to:

Study the following diagram (where K ⊆Mod(C)):

T (C)

����
SetK φev

// //

88 88rrrrrrrrrr
Sh(C, Jcoh)

Apply the developed theory in the study of first order logics.

In particular: study interpolation problems for first order
logics, e.g. for IPL + (φ→ ψ) ∨ (ψ → φ).
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