### Theories of Analytic Monads

#### Marek Zawadowski (joint work with Stanisław Szawiel)

University of Warsaw

PSSL 93, Cambridge, April 15, 2012



Monad = finitary monads on *Set* Morphism of monads = nat. transf. commuting with units and multiplications



**Monad** = finitary monads on Set Morphism of monads = nat. transf. commuting with units and multiplications Analytic Monad = functor part preserves weak wide pullbacks; unit and multiplication are weakly cartesian nat. transf. Morphism of analytic **monads** = weakly cartesian nat. transf. commuting with units

and multiplications



**Monad** = finitary monads on Set Morphism of monads = nat. transf. commuting with units and multiplications Analytic Monad = functor part preserves weak wide pullbacks; unit and multiplication are weakly cartesian nat. transf. Morphism of analytic **monads** = weakly

cartesian nat. transf. commuting with units and multiplications



# **Symmetric Operad** = usual symmetric operad in *Set*



# **Symmetric Operad** = usual symmetric operad in *Set*

Marek Zawadowski(joint work with Stanisław Szawiel) Theories of Analytic Monads

< □ > < 同 >

∃ ► < ∃ ►</p>



**Polynomial Monad** =

functor part preserves wide pullbacks; unit and multiplication are (weakly) cartesian nat. transf. **Morphisms of polynomial monads** = (weakly) cartesian nat. transf. commuting with units and multiplications

< 17 ▶

3 b. 4



Polynomial Monad = functor part preserves wide pullbacks; unit and multiplication are (weakly) cartesian nat. transf. Morphisms of polynomial monads = (weakly) cartesian nat. transf. commuting with

units and multiplications

< 一型



**Rigid Operad** = usual symmetric operad in *Set* + the actions of symmetric groups on operations are free (formerly operads with non-standard amalgamation of Hermida-Makkai-Power)

< 一型

Marek Zawadowski(joint work with Stanisław Szawiel) Theories of Analytic Monads



**Rigid Operad** = usual symmetric operad in *Set* + the actions of symmetric groups on operations are free (formerly operads with non-standard amalgamation of Hermida-Makkai-Power)

A B > A B >

< □ > < 同 >

Marek Zawadowski(joint work with Stanisław Szawiel) Theories of Analytic Monads



•  $\mathbb{F}$  - skeleton of the category of finite sets;  $\underline{n} = \{1, \dots, n\}$ 

A B + A B +

æ

- $\mathbb F$  skeleton of the category of finite sets;  $\underline{n}=\{1,\ldots,n\}$
- $\mathbb{F}^{op}$  the initial Lawvere theory

э

- $\mathbb F$  skeleton of the category of finite sets;  $\underline{n}=\{1,\ldots,n\}$
- $\mathbb{F}^{op}$  the initial Lawvere theory
- the unique morphism into another theory Lawvere theory

$$\pi: \mathbb{F}^{op} \to T$$

- $\mathbb F$  skeleton of the category of finite sets;  $\underline{n}=\{1,\ldots,n\}$
- $\mathbb{F}^{op}$  the initial Lawvere theory
- the unique morphism into another theory Lawvere theory

$$\pi: \mathbb{F}^{op} \to T$$

• Aut(n) is the set of automorphisms of n in T

- $\mathbb F$  skeleton of the category of finite sets;  $\underline{n}=\{1,\ldots,n\}$
- $\mathbb{F}^{op}$  the initial Lawvere theory
- the unique morphism into another theory Lawvere theory

$$\pi: \mathbb{F}^{op} \to T$$

- Aut(n) is the set of automorphisms of n in T
- We have functions

$$\rho_n: S_n \times Aut(1)^n \longrightarrow Aut(n)$$

such that

$$(\sigma, a_1, \ldots, a_n) \mapsto a_1 \times \ldots \times a_n \circ \pi_o$$

#### Simple automorphisms

We say that Lawvere theory T has simple automorphisms iff  $\rho_n$  is a bijection, for  $n \in \omega$ .

#### Simple automorphisms

We say that Lawvere theory T has simple automorphisms iff  $\rho_n$  is a bijection, for  $n \in \omega$ .

#### Structural morphisms

The class of *structural morphisms* in T is the closure under isomorphism of the image under  $\pi$  of all morphisms in  $\mathbb{F}$ .

#### Simple automorphisms

We say that Lawvere theory T has simple automorphisms iff  $\rho_n$  is a bijection, for  $n \in \omega$ .

#### Structural morphisms

The class of *structural morphisms* in T is the closure under isomorphism of the image under  $\pi$  of all morphisms in  $\mathbb{F}$ .

#### Analytic morphisms

A morphism in T is *analytic* iff it is right orthogonal to all structural morphisms.

Lawvere theory T is analytic iff

Lawvere theory T is analytic iff

• T has simple automorphisms;

Lawvere theory T is analytic iff

- T has simple automorphisms;
- structural and analytic morphisms form a factorization system in *T*.

Lawvere theory T is analytic iff

- T has simple automorphisms;
- structural and analytic morphisms form a factorization system in *T*.

#### Rigid Lawvere theory

Lawvere theory T is rigid iff

Lawvere theory T is analytic iff

- T has simple automorphisms;
- structural and analytic morphisms form a factorization system in *T*.

#### Rigid Lawvere theory

Lawvere theory T is rigid iff

• T is analytic;

Lawvere theory T is analytic iff

- T has simple automorphisms;
- structural and analytic morphisms form a factorization system in *T*.

#### Rigid Lawvere theory

Lawvere theory T is *rigid* iff

- T is analytic;
- the actions of symmetric groups

 $S_n \times T(n,1) \rightarrow T(n,1)$ 

$$\langle \sigma, f \rangle \mapsto f \circ \pi_\sigma$$

are free on analytic morphisms.

An analytic interpretation of Lawvere theories  $I : T \rightarrow T'$  is an interpretation of Lawvere theories that preserves analytic morphisms.

An analytic interpretation of Lawvere theories  $I : T \rightarrow T'$  is an interpretation of Lawvere theories that preserves analytic morphisms.

#### Theorem

An analytic interpretation of Lawvere theories  $I : T \rightarrow T'$  is an interpretation of Lawvere theories that preserves analytic morphisms.

#### Theorem

• The category of analytic Lawvere theories and analytic morphisms is equivalent the category of analytic monads.

An analytic interpretation of Lawvere theories  $I : T \rightarrow T'$  is an interpretation of Lawvere theories that preserves analytic morphisms.

#### Theorem

- The category of analytic Lawvere theories and analytic morphisms is equivalent the category of analytic monads.
- The category of rigid Lawvere theories and analytic morphisms is equivalent the category of polynomial monads.

An analytic interpretation of Lawvere theories  $I : T \rightarrow T'$  is an interpretation of Lawvere theories that preserves analytic morphisms.

#### Theorem

- The category of analytic Lawvere theories and analytic morphisms is equivalent the category of analytic monads.
- The category of rigid Lawvere theories and analytic morphisms is equivalent the category of polynomial monads.

#### Theorem

The embedding of the category of analytic Lawvere theories into all Lawvere theories has a right adjoint which is monadic.

# Equational theories linear-regular theories

• 
$$\vec{x}^n = x_1, \ldots, x_n$$

æ

• 
$$\vec{x}^n = x_1, \ldots, x_n$$

A term in context

 $t: \vec{x}^n$ 

is *linear-regular* if every variable in  $\vec{x}^n$  occurs in t exactly once.

• 
$$\vec{x}^n = x_1, \ldots, x_n$$

A term in context

 $t: \vec{x}^n$ 

is *linear-regular* if every variable in  $\vec{x}^n$  occurs in t exactly once.

An equation

 $s = t : \vec{x}^n$ 

is *linear-regular* iff both  $s : \vec{x}^n$  and  $t : \vec{x}^n$  are linear-regular terms in contexts.

• 
$$\vec{x}^n = x_1, \ldots, x_n$$

A term in context

 $t: \vec{x}^n$ 

is *linear-regular* if every variable in  $\vec{x}^n$  occurs in t exactly once.

An equation

$$s = t : \vec{x}^n$$

is *linear-regular* iff both  $s : \vec{x}^n$  and  $t : \vec{x}^n$  are linear-regular terms in contexts.

#### Linear-regular theory

A an equational theory T is *linear-regular* iff it has a set of linear-regular axioms.

• A linear-regular term in context

$$t(x_1,\ldots,x_n)$$
:  $\vec{x}^n$ 

is flabby in T iff

$$T \vdash t(x_1, \ldots, x_n) = t(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) : \vec{x}^n$$
 for some  $\sigma \in S_n$ ,  $\sigma \neq id_n$ .

æ

• A linear-regular term in context

$$t(x_1,\ldots,x_n)$$
:  $\vec{x}^n$ 

is flabby in T iff

$$T \vdash t(x_1,\ldots,x_n) = t(x_{\sigma(1)},\ldots,x_{\sigma(n)}) : \vec{x}^n$$

for some  $\sigma \in S_n$ ,  $\sigma \neq id_n$ .

#### An example of a flabby term

In the theory  $T_{cm}$  of commutative monoids the term  $x_1 \cdot x_2$  is flabby as

$$T \vdash x_1 \cdot x_2 = x_2 \cdot x_1$$

• A linear-regular term in context

$$t(x_1,\ldots,x_n):\vec{x}^n$$

is flabby in T iff

$$T \vdash t(x_1,\ldots,x_n) = t(x_{\sigma(1)},\ldots,x_{\sigma(n)}) : \vec{x}^n$$

for some  $\sigma \in S_n$ ,  $\sigma \neq id_n$ .

#### An example of a flabby term

In the theory  $T_{cm}$  of commutative monoids the term  $x_1 \cdot x_2$  is flabby as

$$T \vdash x_1 \cdot x_2 = x_2 \cdot x_1$$

#### Rigid theory

A an equational theory T is *rigid* iff it is linear-regular and has no flabby terms.

Marek Zawadowski(joint work with Stanisław Szawiel)

An interpretation of equational theories  $I : T \to T'$  is *linear-regular* iff it interprets *n*-ary symbols *f* in *T* as linear-regular terms in contexts  $t : \vec{x}^n$  in *T'*.

An interpretation of equational theories  $I : T \to T'$  is *linear-regular* iff it interprets *n*-ary symbols *f* in *T* as linear-regular terms in contexts  $t : \vec{x}^n$  in *T'*.

#### Theorem

An interpretation of equational theories  $I : T \to T'$  is *linear-regular* iff it interprets *n*-ary symbols *f* in *T* as linear-regular terms in contexts  $t : \vec{x}^n$  in *T'*.

#### Theorem

 The category of linear-regular theories and linear-regular interpretations is equivalent the category of analytic monads.

An interpretation of equational theories  $I : T \to T'$  is *linear-regular* iff it interprets *n*-ary symbols *f* in *T* as linear-regular terms in contexts  $t : \vec{x}^n$  in *T'*.

#### Theorem

- The category of linear-regular theories and linear-regular interpretations is equivalent the category of analytic monads.
- The category of rigid theories and linear-regular interpretations is equivalent the category of polynomial monads.

An interpretation of equational theories  $I : T \to T'$  is *linear-regular* iff it interprets *n*-ary symbols *f* in *T* as linear-regular terms in contexts  $t : \vec{x}^n$  in *T'*.

#### Theorem

- The category of linear-regular theories and linear-regular interpretations is equivalent the category of analytic monads.
- The category of rigid theories and linear-regular interpretations is equivalent the category of polynomial monads.

#### Theorem[M.Bojanczyk, S.Szawiel, M.Z.]

The problem whether a finite set of linear-regular axioms defines a rigid equational theory is undecidable.



#### Monoids

The theory of monoids has two operations  $\cdot$  and e, of arity 2 and 0, respectively, and equations

$$x_1 \cdot (x_2 \cdot x_3)) = (x_1 \cdot x_2) \cdot x_3, \quad x_1 \cdot e = x_1 = e \cdot x_1$$

글▶ 글



#### Monoids

The theory of monoids has two operations  $\cdot$  and e, of arity 2 and 0, respectively, and equations

$$(x_1 \cdot (x_2 \cdot x_3)) = (x_1 \cdot x_2) \cdot x_3, \quad x_1 \cdot e = x_1 = e \cdot x_1$$

By the form of these equations, this theory is strongly regular and hence rigid.

#### Monoids

The theory of monoids has two operations  $\cdot$  and e, of arity 2 and 0, respectively, and equations

$$(x_1 \cdot (x_2 \cdot x_3)) = (x_1 \cdot x_2) \cdot x_3, \quad x_1 \cdot e = x_1 = e \cdot x_1$$

By the form of these equations, this theory is strongly regular and hence rigid. In the Lawvere theory for monoids  $T_m$  a morphism

$$n \rightarrow 1$$

is analytic iff it is of form

$$\langle x_1, \ldots x_n \rangle \mapsto x_{\sigma(1)} \cdot \ldots \cdot x_{\sigma(n)}$$

for some  $\sigma \in S_n$ .

#### Monoids with anti-involution

The theory of monoids with anti-involution in a theory of monoids that has an additional unary operation s and additional two axiom

$$s(x_1) \cdot s(x_2) = s(x_2 \cdot x_1), \quad s(s(x_1)) = x_1$$

#### Monoids with anti-involution

The theory of monoids with anti-involution in a theory of monoids that has an additional unary operation s and additional two axiom

$$s(x_1) \cdot s(x_2) = s(x_2 \cdot x_1), \quad s(s(x_1)) = x_1$$

This theory is not strongly regular but it is not difficult to see that it is rigid.

#### Monoids with anti-involution

The theory of monoids with anti-involution in a theory of monoids that has an additional unary operation s and additional two axiom

$$s(x_1) \cdot s(x_2) = s(x_2 \cdot x_1), \quad s(s(x_1)) = x_1$$

This theory is not strongly regular but it is not difficult to see that it is rigid. In the Lawvere theory for monoids with anti-involution  $T_{mai}$  a morphism

$$n \rightarrow 1$$

is analytic iff it is of form

$$\langle x_1, \ldots x_n \rangle \mapsto s^{\varepsilon_n}(x_{\sigma(1)}) \cdot \ldots \cdot s^{\varepsilon_n}(x_{\sigma(n)})$$

for some  $\sigma \in S_n$  and  $\varepsilon_i \in \{0, 1\}$ .

The theory of commutative monoids is the theory of monoids with an additional axiom

$$m(x_1,x_2)=m(x_2,x_1)$$

The theory of commutative monoids is the theory of monoids with an additional axiom

$$m(x_1,x_2)=m(x_2,x_1)$$

Thus is it linear-regular but it is obviously not rigid.

The theory of commutative monoids is the theory of monoids with an additional axiom

$$m(x_1,x_2)=m(x_2,x_1)$$

Thus is it linear-regular but it is obviously not rigid. In the Lawvere theory for commutative monoids  $T_{cm}$  there is exactly one analytic morphism

$$n \rightarrow 1$$

It is of form

$$\langle x_1,\ldots,x_n\rangle\mapsto x_1\cdot\ldots\cdot x_n$$

The theory of commutative monoids is the theory of monoids with an additional axiom

$$m(x_1,x_2)=m(x_2,x_1)$$

Thus is it linear-regular but it is obviously not rigid. In the Lawvere theory for commutative monoids  $T_{cm}$  there is exactly one analytic morphism

$$n \rightarrow 1$$

It is of form

$$\langle x_1, \ldots x_n \rangle \mapsto x_1 \cdot \ldots \cdot x_n$$

 $T_{cm}$  is the terminal analytic Lawvere theory.

# Categories of Equational Theories (again)



< 日 > < 同 > < 三 > < 三 >

æ

# Thank you!

æ