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The question

Let A be a finite category and X : A→ FinSet a functor.

Question

When can the cardinality of colim X be calculated from cardinality
information about X ?



Example #1: Coproducts

For finite sets X and Y , we have

|X t Y | = |X |+ |Y |



Example #2: Pushouts

For a pushout diagram of finite sets

X
i //

j

��

Y

p

��

Z q
// Y ∪X Z

_�

if i and j are injections, then

|Y ∪X Z | = |Y |+ |Z | − |X |



Example #3: Quotients

For an action of a finite group G on a finite set X ,
if the action is free, then ∣∣∣X/G

∣∣∣ =
|X |
|G |



Weightings

Definition

A weighting on a finite category A is a function

k(−) : ob(A)→ Q

such that . . .

Theorem (Leinster)

If A admits a weighting and X : A→ FinSet is a coproduct of
representables, then ∣∣ colim X

∣∣ =
∑
a∈A

ka|X (a)|.

What about more general diagrams?
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Example #2: Homotopy pushouts

Regard a finite set as a 0-dimensional manifold.
Then its cardinality is equal to its Euler characteristic.

Theorem

For any homotopy pushout square of spaces with Euler
characteristic:

X //

��

Y

��

Z // Y ∪X Z

_�

we have
χ(Y ∪X Z ) = χ(Y ) + χ(Z )− χ(X )



Example #3: The lemma that is not Burnside’s

Theorem (Cauchy, Frobenius)

For any action of a finite group G on a finite set X , we have∣∣∣X/G
∣∣∣ =

1

|G |
∑
g∈G

∣∣X g
∣∣

where X g = { x ∈ X | g · x = x }.

If the action is free, then X e = X and X g = ∅ for g 6= e.
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Traces in symmetric monoidal categories

Definition

An object X of a closed symmetric monoidal category V is
dualizable if we have X ∗ with maps

I
η−→ X ⊗ X ∗ X ∗ ⊗ X

ε−→ I

satisfying the triangle identities.

Definition

If X is dualizable and f : X → X , the trace of f is

I
η−→ X ⊗ X ∗

f⊗1−−→ X ⊗ X ∗
∼=−→ X ∗ ⊗ X

ε−→ I

The Euler characteristic of X is χ(X ) = tr(1X ).
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Euler characteristics of finite sets

In (FinSet,×, 1) not many objects are dualizable, but we can
apply a monoidal functor

Σ: (FinSet,×, 1)→ (V ,⊗, I )

which preserves some colimits, and calculate traces in V .

Examples

• V = Vect, ΣX = the free vector space on X .

χ(ΣX ) = dim(ΣX ) = |X |.

• V = the stable homotopy category, ΣX = the suspension
spectrum of X+.

χ(ΣX ) = |X |.
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Examples

1 If V is additive, then

χ(X ⊕ Y ) = χ(X ) + χ(Y )

2 (J.P. May) If V is triangulated, then

χ(Y ∪X Z ) = χ(Y ) + χ(Z )− χ(X ).

3 (Induced character) If V is additive and |G |-divisible, then

χ(X/G ) =
1

|G |
∑
g∈G

trX (g).

(And similarly for traces of other endomorphisms.)



A more refined question

Suppose:

• V is closed symmetric monoidal and cocomplete.

• A is a small V -category

• Φ: Aop → V is a V -functor (a “weight”)

• X : A→ V is a V -functor with each X (a) dualizable.

Questions

1 When does it follow that colimΦ X is dualizable?

2 Can we calculate χ(colimΦ X ) in terms of X ?

Remark: we allow V to have homotopy theory too: an
“(∞, 1)-category” or “derivator”.
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Duality in bicategories

• A monoidal V becomes a bicategory BV with one object.

• An object X ∈ V is dualizable ⇐⇒ X has an adjoint in BV .

Question

In an arbitrary bicategory, given a 1-cell X : A −7−→ B with an adjoint
and a 2-cell f : X → X , can we define its trace?

IA
η−→ X � X ∗

f�1−−→ X � X ∗
???−−→ X ∗ � X

ε−→ IB

X � X ∗ and X ∗ � X don’t even live in the same category!
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Trace in bicategories

Suppose the bicategory is symmetric monoidal. If the object A has
a dual, then a 1-cell M : A −7−→ A has a trace:

I
�η //

�
Tr(M)

88A⊗ A∗
�M⊗IA∗ // A⊗ A∗

�' // A∗ ⊗ A
�ε // I

Solution (Ponto)

If the objects A and B have duals and X : A −7−→ B has an adjoint,
then f : X → X has a trace:

Tr(IA)
η

//

tr(f )

44
Tr(X � X ∗)

f�1
// Tr(X � X ∗)

∼= // Tr(X ∗ � X )
ε // Tr(IB)
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A step back

in a sym. mon. category
X a dualizable object

f : X → X a morphism
tr(f ) : I → I a morphism

in a sym. mon. bicategory
A a dualizable object
X : A −7−→ A a 1-cell

Tr(X ) : I −7−→ I a 1-cell

in a bicategory

X : A −7−→ B an adjoint
f : X → X a 2-cell

(The Baez-Dolan microcosm principle.)
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Composition of traces

If X and Y have adjoints, so does X � Y (of course).

Theorem

For 2-cells f : X → X and g : Y → Y , we have

Tr(IA)
tr(f )

//

tr(f�g)

&&

Tr(IB)
tr(g)

// Tr(IC )
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The bicategory of enriched modules

Let V be symmetric monoidal closed and cocomplete.

Definition

The symmetric monoidal bicategory V Mod has

• As objects, small V -categories.

• As 1-cells A −7−→ B, V -functors Bop ⊗ A→ V
(a.k.a. profunctors, distributors, modules, relators, . . . )

• The composite of X : A −7−→ B and Y : B −7−→ C is

(X � Y )(c, a) =

∫ b∈B
X (b, a)⊗ Y (c , b)

• Every object A has a dual Aop.

• The trace of M : A −7−→ A is

Tr(M) =

∫ a∈A
M(a, a).



Diagrams and weights

Let I be the unit V -category. Then

• A module A −7−→ I is just a V -functor A→ V (a diagram).

• A module I −7−→ A is just a V -functor Aop → V (a weight).

• For Φ: I −7−→ A and X : A −7−→ I we have

colimΦ X ∼= Φ� X .



Dualizable modules

Theorem

A diagram X has a right adjoint ⇐⇒ each X (a) is dualizable.

Theorem (Street)

A weight has a right adjoint ⇐⇒ it is absolute, i.e. Φ-weighted
colimits are preserved by all V -functors.
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Absolute colimits are dualizable

Recall:

Question 1

If each X (a) is dualizable, when is colimΦ X dualizable?

Answer

When Φ is absolute.

Examples

• Finite coproducts are absolute for additive V .

• Pushouts are absolute for triangulated V (homotopically).

• Quotients by finite G are absolute for |G |-divisible V .
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Traces of absolute colimits

Question 2

If Φ is absolute and each X (a) is dualizable, how can we calculate
χ(colimΦ X )?

Abstract Answer

Since Φ: I −7−→ A and X : A −7−→ I have adjoints, we have

I = Tr(II)
tr(1Φ)

//

χ(colimΦ X )=tr(1Φ�1X )

''

Tr(IA)
tr(1X )

// Tr(II) = I

But what are Tr(IA), tr(1Φ), and tr(1X )?



Traces of categories

Tr(IA) =

∫ a∈A
A(a, a)

=
∑
a∈A

A(a, a)
/

(αβ ∼ βα)

The coproduct (or “direct sum”) of all endomorphisms in A,
modulo “conjugacy”.

In particular, it contains

• a class for each identity morphism [1a].

• [1a] = [1b] if and only if a ∼= b.

• but also classes for other endomorphisms.
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Traces for weights

For Φ an absolute weight, the trace of 1Φ

tr(1Φ) : I → Tr(IA)

is a linear combination of conjugacy classes of endomorphisms:∑
α

φα[α].

Theorem

If Φ = ∆A1 is absolute, A is skeletal, and has no nonidentity
endomorphisms, then ka := φ1a defines a weighting on A.



Traces for diagrams

Theorem

For X a dualizable diagram, the trace of 1X

tr(1X ) : Tr(IA)→ I

sends each endomorphism α : a→ a in A to the trace in V of

X (a)
X (α)

// X (a).

In particular, it sends 1a to χ(X (a)).



Traces of colimits

Recall:

I = Tr(II)
tr(1Φ)

//

χ(colimA X )=tr(1Φ�1X )

''

Tr(IA)
tr(1X )

// Tr(II) = I

Concrete answer

If Φ is absolute and each X (a) is dualizable, then

χ(colimΦ X ) =
∑

[α]∈Tr(IA)

φα · tr
(
X (α)

)



Examples

1 Coproducts: A discrete with objects a and b.
• If V is additive, Φ = ∆A1 is absolute.
• Tr(IA) generated by 1a and 1b.
• φ1a = φ1b = 1.

2 Pushouts: A is (b ← c → a).
• If V is stable/triangluated, Φ = ∆A1 is absolute.
• Tr(IA) generated by 1a, 1b, and 1c .
• φ1a = φ1b = 1 and φ1c = −1.

3 Quotients: A is a finite group G .
• If V is |G |-divisible, Φ = ∆A1 is absolute.
• Tr(IA) generated by conjugacy classes in G .

• φC = |C |
|G |



Another example: splitting idempotents

A the free-living idempotent e on an object x .

• Φ = ∆A1 is absolute for any V .

• Tr(IA) generated by 1x and e.

• φ1x = 0 and φe = 1.

The colimit of an idempotent e : X → X is a splitting of it, and

χ(X/e) = tr(e).



Euler characteristics of categories

Let A be a finite category with no nonidentity endomorphisms.

1 Φ = ∆A1 can be constructed from pushouts, hence is
absolute for triangulated V .

2 The trace of 1∆A1 is a weighting on A.

3 The homotopy colimit of the constant diagram X (a) = 1 is
the classifying space |NA|.

Thus we can deduce:

Theorem (Leinster)

For A as above, we have

χ
(
|NA|

)
=
∑
a∈A

ka = the “Euler characteristic of A”.
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